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Introduction

Arthur B. Weglein

May 21, 2014

M-OSRP’s research objective and goal: identify and address seismic processing
challenges

The research objective of M-OSRP is to identify and address outstanding, pressing and prioritized
seismic exploration challenges. M-OSRP develops and delivers step-change improved capability to
the seismic processing tool-box. That goal delivers new options and processing methods that will
be successful and effective when the methods and choices within the current tool-box can and will
have difficulty and/or fail. What we provide will not always be the appropriate choice within the
toolbox; but what we provide increases the number and types of options, and allows new capability,
when needed. That new set of options then facilitates and supports exploring and producing in
offshore and on-shore areas and types of plays that are currently too technically challenging, high
risk, and unreasonable as investments and to help make those currently difficult or precluded E&P
areas, plays and opportunities more reasonable, accessible and manageable.

What’s behind seismic processing challenges? Why do we drill dry holes; why
do we drill suboptimal development wells? Why do seismic processing methods
have problems and fail?

Seismic processing methods are effective and successful when their assumptions and prerequisites are
satisfied. When assumptions behind processing methods are not satisfied, these methods can fail.
That, in turn, contributes to dry hole drilling and sub-optimal development well drilling decisions.

There are different categories of assumptions, among them are: (1) acquiring the required/ade-
quate seismic data, and (2) required preprocessing, subsurface information, interpretive intervention,
needed for methods to be effective.

The M-OSRP strategy and plan

The industry trend to more complicated and challenging offshore and on-shore plays demands
more sophisticated and effective seismic processing and imaging methods, with more physically

1
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complete and realistic descriptions and concepts. Historically, at every stage of seismic processing
and imaging evolution and advancement there has been a concomitant greater demand on providing
more detailed and accurate subsurface information (for example, the evolution of seismic migration
from post-stack migration, to pre-stack time migration, to pre-stack depth migration, to pre-stack
migration-inversion, to RTM for heterogeneous anisotropic media) where each step was, at once,
both more complete, effective and more demanding.

The confluence of seismic methods that make increasing demands for detailed and accurate subsur-
face information, together with the industry trend to regions and plays where providing that level
of subsurface information is, in general, increasingly difficult to satisfy, and therefore represents a
significant challenge at the present time and for the foreseeable future.

The inability to adequately provide that accurate and detailed subsurface information is a con-
tributing factor to seismic processing, imaging and inversion breakdown and failure and subsequent
dry hole drilling. There are two ways to address that type of challenge: (1) remove the assumption
violation by finding, e.g., new methods and approaches for satisfying the prerequisites, data acqui-
sition assumptions, and accurate velocity models and other subsurface information, or (2) remove
the assumption, by developing new methods that do not make that assumption.

Methods have assumptions and requirements: How does M-OSRP decide whether
to advance seismic capability by: (a) developing new methods/approaches to
provide what a current method requires or (b) developing fundamentally new
methods that do not have those requirements/assumptions?

M-OSRP adopts one or the other of these attitudes and approaches for different assumptions,
requirements, steps, and links in the seismic processing chain that’s under stress and duress and is
in need of attention and improvement.

We describe here the basic strategy that M-OSRP adopts in deciding between: (a) finding a better
way of satisfying a current method’s assumptions and requirements, and (b) developing new and
more effective methods that do not require those assumptions.

If the method requires, e.g., adequate data collected or a better description of the seismic experi-
ment (e.g., the source signature and radiation pattern and deghosted data) then find an approach
and method to satisfy those requirements. However, if the method requires detailed subsurface in-
formation, or interpretive intervention, to be effective and successful then develop a direct method
that doesn’t require that subsurface information.

Why the aversion to providing subsurface information?

As the petroleum industry trend world-wide moves to ever more complex and challenging plays,
the ability to provide subsurface information has become (and will continue to become) an increas-
ingly serious impediment to effectiveness. That fact, explains the reasonableness and (in fact) the
necessity of seeking new methods that can be more effective than current capability, and without
subsurface information.
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A central purpose of M-OSRP has been, and remains, to provide a consistent and comprehensive
set of seismic processing methods, for every link in the processing chain, that are direct and do not
require any knowledge of subsurface information.

The tools

The methods M-OSRP develops to satisfy prerequisites, e.g., (reference wave prediction separation,
source signature and radiation pattern, and source and receiver deghosting) benefit from forms
of wave field separation methods derived from Green’s theorem (the extinction theorem). Recent
papers on this subject can be found in
http://mosrp.uh.edu/news/recent-published-papers-deghosting

Those preprocessing methods do not require subsurface information. All ISS subseries require these
preprocessing prerequisites (provided by variants of Green’s theorem) to achieve ISS processing
objectives.

The inverse scattering series communicates that all processing objectives are achievable directly and
without subsurface information. Isolated task ISS subseries are identified that directly and without
subsurface information achieve free surface and internal multiple removal, depth imaging, target
identification and Q compensation without Q.

The combination of Green’s theorem preprocessing and ISS processing provides every link in the
processing chain with methods that are direct, and do not require subsurface information.

M-OSRP and Multiples

The early history of multiple removal methods required at every step a more detailed and accurate
velocity model (for example, stacking, to FK filters, to Radon, and high resolution Radon or 1D
earth and statistical assumptions concerning primaries and multiples (Deconvolution)). A sea-
change in multiple removal capability arrived with methods that to one extent or another didn’t
require subsurface information or interpretive intervention. Methods from the Delphi consortium
depended on either subsurface information and/or interpretive intervention, whereas the inverse
scattering series (ISS) methods from M-OSRP did not. That is the reason that the ISS internal
multiple attenuator has assumed a mainstream industry status and recognition as the high water
mark of internal multiple capability. There is ample evidence to support the latter claim, including
the 2013 SEG (Thursday, September 26, 2013) Internal Multiple Workshop where 9 of the 10
presenters showed ISS internal multiple results as the state of the art available capability for that
seismic internal multiple goal and objective. ISS internal multiple attenuation has become fully
mainstream.

Challenge we face

However, we also recognize, report and emphasize that the current industry portfolio/trend and
focus today (and for the foreseeable future) makes it clear that there is a large and significant
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gap between the current challenge for the removal of free surface and internal multiples, where the
specific issues are that: (1) the multiple generators and the subsurface properties are ill-defined and
complex and (2) the multiple can too often be proximal to or interfering with primaries. That type of
challenge of removing multiples proximal to, and/or overlapping with, primaries (without damaging
primaries) is well beyond the collective capability of the petroleum industry, service companies and
academic research groups and consortia—in their ability to effectively address that issue today.

There is a need for new basic concepts, and fundamental theory development that will first need to
take place, and following that delivery the practical application issues will need to be addressed.

The plan

At the 2013 SEG, we proposed and described a three pronged strategy (please see the link and slides
below) to address that challenge, that M-OSRP will pursue—with the potential to provide the step-
change increased and necessary capability. That strategy and plan responds to this outstanding,
pressing and prioritized challenge. That level and magnitude of challenge (and the potential open-
ing and delineation of new petroleum reserves and the scale of the opportunity that overcoming
it represents) resides behind our commitment to develop and deliver fundamental new concepts,
algorithms with step change increased capability, and has returned multiple removal (from its being
viewed as a relatively mature subject and project that helps “pay the rent”) back to center stage
as a major research project and focus within the Mission-Oriented Seismic Research Program. We
feel that our background and experience gives us a good chance to develop, and to deliver, the next
level of required capability.

Below please find links for the 2013 SEG abstracts/posters/presentations and slides that relate to
this communication.
http://mosrp.uh.edu/events/event-news/seg-annual-meeting-2013
http://mosrp.uh.edu/news/seg-annual-meeting-2013

In the table of contents, we have divided the contributions to this Annual Report into categories:
(1) (a) Prerequisite satisfaction and ISS multiple removal, (b) case studies
(2) Beyond internal multiple attenuation: (a) Removing artifacts/spurious events, (b) internal mul-
tiple elimination
(3) ISS depth imaging without the velocity model: update
(4) Analysis and tests of amplitude information at the image point from asymptotic and wave
equation migration: implications for RTM.

2014 SEG Expanded Abstracts that relate to these topics can be found in the link:
http://mosrp.uh.edu/research/publications/seg-abstracts-2014

What is asymptotic and wave equation migration amplitude analysis with a
velocity model doing in an M-OSRP report? What are our objectives, what
have we contributed and what are our plans?

While deriving preprocessing methods (described above), and one-way-wave Stolt pre-stack wave
equation migration (WEM) from Green’s theorem, for our class at UH in Seismic Physics, it was
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natural to consider how to derive a wave equation migration for two way propagating waves (for
RTM) from Green’s theorem. That produced the first WEM RTM.

Please see the link
http://mosrp.uh.edu/news/wave-equation-migration-RTM

Wave equation migration (WEM) consists of predicting a source and receiver experiment at depth,
and then a coincident source and receiver experiment at time equals zero. There are two other
original and classic migration imaging conditions, (1) the space and time coincidence of up and
down going waves and (2) the exploding reflector model.

These three migration/imaging conditions are not equivalent, with the latter two representing
asymptotic (Kirchhoff) approximations of the WEM concept and algorithms. There are several
advantages to WEM compared to asymptotic forms of migration: (1) a definitive answer as to
whether a subsurface point is an image point; (2) the amplitude analysis at the image point, and
(3) the ubiquitous wave coverage and illumination of WEM compared to asymptotic ray based
methods. Those advantages and differences between asymptotic and WEM are present for both one
way and two-way (RTM) methods.

The first definitive examination and comparison of WEM and asymptotic (Kirchhoff) migration, for
one-way-waves, and their respective amplitude information and analysis at the target is reported in
this Annual Report. The asymptotic approximate image is useful for structure maps, but doesn’t
provide an angle dependent reflection coefficient. WEM provides both structure and amplitude
information at the image point.

Asymptotic (Kirchhoff) approximate migration doesn’t provide an approximate
experiment of a predicted coincident source and receiver at time equals zero at
an image point.

Asymptotic migration loses that definiteness and meaning of WEM at the image point and provides
instead a fixed travel-time curve with “candidate” image points. The physical meaning and ampli-
tude benefits of the WEM experiment at the image point are lost in asymptotic migration, whether
for one way waves or for RTM (all current RTM methods are asymptotic migration).

This has important implications for all current RTM methods, which are asymptotic migration,
and suggests and encourages a look at the first WEM RTM that M-OSRP has pioneered, and will
keep developing. There are also implications for those looking at increased illumination by imaging
primaries and multiples separately, since all current approaches to that problem use asymptotic
RTM methods, which are intrinsically illumination challenged to begin with. Once again, that’s an
opportunity for WEM RTM.

M-OSRP doesn’t plan to be involved long term in the RTM business, because
it’s a velocity dependent method.

Every year those pursuing RTMmethods describe their need for a yet more complicated and accurate
set of heterogeneous and anisotropic velocities. We have no special concept, or idea (or interest) to
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compete in that “provide the velocity” arena, where many capable and resourceful and hard-working
researchers now reside. Our goal is to examine and define the potential and the added-value of WEM
RTM compared to asymptotic RTM, in some simple but meaningful two dimensional examples, and
then encourage others to pursue the further development, where their experience and expertise will
expedite that continued development, application and delivery. That’s our current plan for RTM.

ISS depth imaging without the velocity model

In this Report, HOIS, a ISS direct depth imaging algorithm without a velocity model is applied to
the Marmousi model.

The results are very encouraging and the computer run time is 30% longer than a single Stolt
pre-stack water speed migration.

Our prediction for the future is that ISS depth imaging will enter the seismic imaging tool box with
stand-alone imaging capability in the next 5-10 years. Our first published field data test of ISS
imaging on the Kristin North Sea data set demonstrated concept and method viability.

The technical steps needed between viability and providing a new and more effective seismic imag-
ing option within the seismic toolbox are understood, and will be taken. ISS depth imaging will
in the future have the same mainstream role for depth imaging under the most challenging and
daunting subsurface complexity that ISS multiple removal plays today, and will be the new and
necessary option available for exactly those same daunting circumstances. Those who understand
the derivations and logic behind the ISS free surface and internal multiple attenuation methods,
will have no problem with the logic that leads to ISS depth imaging. The ISS multiple removal
methods and the ISS depth imaging and inversion algorithms derive from the same single set of ISS
equations.

Summary/Focus

M-OSRP is pleased to see the mainstream usage and application of the ISS internal multiple atten-
uator.

However, the current challenges frequently faced with on-shore plays and complex off-shore plays to
remove multiples of different orders, and, proximal to, or interfering with, primaries, and without
damaging primaries, raises the bar on needed multiple removal capability. That new level of multiple
removal challenge is currently beyond the collective capability of the petroleum industry to address.
M-OSRP has a three pronged strategy and plan to address that challenge and to develop and deliver
an effective response. That is currently (and near term will remain) our central and principle focus
and resource allocation. That new algorithmic strength and capability developed within M-OSRP
will have a commensurate higher level of compute demand. Our collaboration/cooperation/part-
nership with IBM connects the “what to compute” for more effectiveness from M-OSRP with new
visions of “how to compute” from IBM. That combination of “what” and “how” are essential for
providing a new, more effective and relevant capability to our sponsors.
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We plan to continue our research in WEM RTM (with a velocity model) and ISS direct imaging
(without a velocity model).

For the near future, these imaging projects, will move forward, but with somewhat less resource
allocation in comparison to the serious and unfinished business of removing multiples.

There are several reasons for this relative emphasis of projects within M-OSRP: (1) there are
numerous regions in the world (e.g., the Middle East, Central North Sea, . . . ) where without more
capability and effectiveness in removing multiples, making advances in imaging (that depend on
multiples having been removed) are irrelevant or useless; and (2) there is often a resistance among
researchers in seismic imaging to recognize and acknowledge an imaging challenge as existing, beyond
the one that they are currently able to address.

M-OSRP has a portfolio of projects that takes ownership of all the links in the seismic processing
chain. Some of our projects are embryonic, whereas others are more “mature” and help “pay the rent”.
M-OSRP is very aware that some of the concepts we develop and methods we pursue, and messages
we communicate, are at variance with the conventional, the consensus view and mainstream concepts
and thinking. To provide fundamental new step change capability requires the ability to be resolute
and to flourish and to succeed in the face of considerable doubt and skepticism.

No real advance in science ever occurred without running into issues and obsta-
cles from the “consensus view”

It wasn’t too long ago that a statement like “multiples can be predicted directly and without
subsurface information” was greeted with eyes rolling and disbelief. Now that idea and methodology
have become mainstream. Today, saying it will be possible to “directly depth image without a
velocity model” generally elicits that same incredulous response.

We are enormously fortunate and deeply grateful for your encouragement and support. Your support
and confidence allows us the opportunity to perform fundamental directed “mission-oriented” seismic
research that will continue to deliver effective responses to pressing and prioritized seismic processing
challenges.

Arthur B. Weglein
May, 2014
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Short note: Multiple removal and prerequisite satisfaction:
Current status and future plans

James D. Mayhan and Arthur B. Weglein

May 21, 2014

Abstract

In exploration seismology, as the geology that seismic waves probe becomes more complex, the
untangling of multiples and primaries becomes more challenging. The inverse scattering series
(ISS) has provided distinct algorithms for eliminating free-surface multiples and attenuating
internal multiples without needing any subsurface information. For these two algorithms to
deliver on their promise, however, it is important that we satisfy their prerequisites. The
free-surface-multiple-elimination algorithm assumes that its input has had the source wavelet
deconvolved and ghosts removed. The internal-multiple algorithm also requires deghosting and
source-wavelet deconvolution and further assumes that its input data have had free-surface
multiples removed. Fortunately, Green’s theorem provides algorithms for estimating the source
wavelet and removing ghosts that are consistent with the ISS algorithms — i.e., those algorithms
need no subsurface information and are multidimensional. The effects of meeting and not
meeting the prerequisites of the demultiple algorithms are exemplified here, and the current
status and future plans for demultiple algorithms are discussed.

1 Introduction

The purposes of this paper are (1) to show some results of Green’s-theorem preprocessing (required
by ISS algorithms), (2) to review and exemplify the influence that results from satisfying the prereq-
uisites for free-surface-multiple and internal-multiple algorithms with synthetic data corresponding
to offshore plays, and (3) to motivate onshore methods for satisfying the prerequisites and to describe
early efforts to reach that goal.

As exploration for hydrocarbons has moved into areas with increasingly complex geology, there are
more instances in which multiples are proximal to or even overlap the primaries. Hence, demultiple
algorithms are challenged to remove multiples without damaging proximal primaries. The inverse
scattering series (ISS) can achieve all processing objectives directly and without subsurface infor-
mation. In particular, the ISS free-surface-multiple-elimination method can accurately predict the
phase and amplitude of free-surface multiples, if its prerequisites (source signature and deghosted
data) are satisfied (Carvalho et al., 1992; Weglein et al., 1997, 2003). This has been demonstrated
on marine field data (Carvalho, 1992; Carvalho et al., 1992; Carvalho and Weglein, 1994; Weglein
et al., 2003; Ferreira, 2011). The current ISS internal-multiple-attenuation algorithm can predict the
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exact phase (time) and an approximate amplitude of all internal multiples, at once, automatically,
and without subsurface information (Araújo et al., 1994; Weglein et al., 2003), as has been demon-
strated on marine field data (Matson et al., 1999; Terenghi et al., 2011; Ferreira, 2011; Weglein,
2013; Goodway and Mackidd, 2013; Kelamis and Yi Luo, 2013; Ferreira et al., 2013; Dragoset,
2013; Brookes and Jenner, 2013; Griffiths et al., 2013; Hegge et al., 2013). Those ISS properties are
what all other current demultiple methods (e.g., Feedback-loop methods, modeling and subtraction
of multiples, and filter methods) do not possess and cannot deliver (Weglein, 1999; Weglein and
Dragoset, 2005; Qiang Fu et al., 2010; Yi Luo et al., 2011; Weglein et al., 2011; Ferreira, 2011;
Kelamis et al., 2013). Details concerning the ISS free-surface-multiple-elimination method and the
internal-multiple-attenuation algorithm can be found in the Appendix.

The prerequisites for ISS demultiple algorithms can be met by Green’s-theorem-based algorithms
(Weglein and Secrest, 1990; Weglein et al., 2002; Jingfeng Zhang and Weglein, 2005, 2006; Jingfeng
Zhang, 2007). The ability of Green’s theorem to meet prerequisites has been tested on SEAM and
field data (Mayhan and Weglein, 2013a; Mayhan, 2013); we show examples in Figures 1-3. When
the prerequisites are satisfied, the prediction improves, as is shown in Figures 5-12. Background on
Green’s-theorem-based algorithms can be found in the Appendix.

Zhiqiang Wang (now at PGS) tested Green’s-theorem deghosting while an intern at Total (Figure 4).

Free-surface-multiple removal without and with prior removal of ghosts is shown in Figures 6 and
7, respectively. Using the model shown in Figure 5, Figures 6a and 7a are the input data with and
without ghosts, respectively. Inputting those data into the ISS free-surface-multiple-elimination
algorithm, Figures 6b and 7b are the corresponding free-surface-multiple predictions. After sub-
traction of the predicted free-surface multiples from the input data, Figures 6c and 7c show the
corresponding results. If the input data are not deghosted, the ISS free-surface-multiple-removal
method can predict the exact phase but only an approximate amplitude of free-surface multiples.
After deghosting the data, we can see that all free-surface multiples are predicted exactly, and,
through a simple subtraction, all are well eliminated, and, most importantly, primaries are not
touched, as is shown in Figure 6c. For simple synthetic data, other examples of removing free-
surface multiples, with and without deghosting, are given in Jingfeng Zhang (2007) and Zhiqiang
Wang et al. (2012) .

Free-surface-multiple elimination and internal-multiple attenuation with and without first removing
the source wavelet are shown in Figures 8-12. Figures 8-9 uses the model in Figure 5, and Figures 11-
12 use a model with no free surface and with two reflectors (Figure 10). Figures 8 and 9 show
the input data, the predicted free-surface multiples using the ISS free-surface-multiple-elimination
algorithm, and the results of simple subtraction without and with source-wavelet deconvolution.
Figures 11 and 12 show the input data, the predicted internal multiples using the ISS internal-
multiple-attenuation algorithm, and the results of simple subtraction without and with source-
wavelet deconvolution. In Figure 12, the amplitude of the predicted internal multiple is comparable
to the internal multiple in the input data, while the amplitude is totally different from that of the
internal multiple in the input data in Figure 11. Deconvolution of the source wavelet, as required
by the internal-multiple-attenuation algorithm, significantly improves the amplitude and shape of
the predicted internal multiple.

ISS free-surface-multiple elimination assumes (1) Carvalho’s obliquity factor, q, given (in 2D) by
q = sgn(ω)

√
ω2/c20 − k2, which is not available in other methods including Delft SRME, (2) the
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Figure 1: SEAM data, example shot (131373), recorded data at 17 m. Tested while an intern at
PGS.
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Figure 2: Green’s-theorem deghosting on SEAM data (Mayhan and Weglein, 2013b). Shot 131373,
frequency spectra: blue=P at 17 m, red=receiver deghosted at 10 m using Green’s theorem,
green=source and receiver deghosted at 10 m using Green’s theorem. Vertical axis=amplitude (dB),
horizontal axis=frequency (Hz). The first source notch is at 44 Hz, which lies above the source
frequency range (1–30 Hz). Note the shift of the spectrum towards lower frequencies (which may be
of interest to FWI).
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Figure 3: Green’s-theorem deghosting on field data (Mayhan et al., 2011). Shot 841, frequency
spectra: blue=P at 25 m, red=receiver deghosted at the air-water boundary using Green’s theorem.
Vertical axis=amplitude (dB), horizontal axis=frequency (Hz). The receiver notches around 30 Hz,
60 Hz, and 90 Hz have been filled in. Input data courtesy of PGS.
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Green’s theorem deghosting

and

P(zg,zs,ω) = R

"
eik(2zwb−zg−zs)− eik(2zwb−zg+zs)

2ik

+
−eik(2zwb+zg−zs) + eik(2zwb+zg+zs)

2ik

#
. (4)

represents the water-bottom reflected primary and its source,
receiver, and source and receiver ghosts respectively. Here
k = ω/c0 is the wave number, R is the water-bottom reflec-
tion coefficient, zg is the receiver depth, zs is the source depth,
zwb is the water-bottom depth, and we suppose the free surface
is at depth 0 and the sources and receivers are placed between
free surface and water bottom (0 < zs < zg < zwb).

Substitute the Green’s function G0 and the wavefield P into
Equation 1 to perform receiver side deghosting,

Pdeghosted
receiver (z′g,zs,ω)

= [P(z,zs,ω)
dG+

0 (z,z′g,ω)
dz

−G+
0 (z,z′g,ω)

dP(z,zs,ω)
dz

]|z=zg

= R

"
eik(2zwb−z′g−zs)− eik(2zwb−z′g+zs)

2ik

#
. (5)

Here we assume z′g < zg, which means the predicted cable is
shallower than the actual cable. The receiver side ghosts are
removed and only the primary and its source side ghost remain
in Equation 5. Further, we feed the receiver side deghosted
data into Equation 2 for source side deghosting,

Pdeghosted(z′g,z′s,ω)

= [Pdeghosted
receiver (z′g,z,ω)

dG+
0 (z,z′s,ω)

dz

−G+
0 (z,z′s,ω)

dPdeghosted
receiver (z′g,z,ω)

dz
]|z=zs

=
Reik(2zw−z′g−z′s)

2ik
. (6)

Again we assume z′s < zs (e.g., the predicted source is shal-
lower than the actual source). The result of equation 6 is the
water bottom reflected primary, without source, receiver, or
source and receiver ghosts.

(a) Model one
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Figure 1: Models for testing.
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Figure 2: Deghosting for model one.

NUMERICAL TESTING

The code used to compute the results in this abstract is the re-
ceiver side deghosting code written by J. Mayhan and released
in 2011 to the M-OSRP consortium. Changes were made to
accommodate both receiver and source side deghosting. As
mentioned above, we will use data with over/under sources
and over/under receiver cables.

The first tested case (Figure 1a) is a three layer model with
sources at 30m and 32m and receivers at 140m and 142m, such
that the ghosts are not overlapping either with the correspond-
ing primaries or among themselves. Figure 2b is the result after
receiver side deghosting and Figure 2c is source and receiver
side deghosting. Figures 2d, 2e, and 2f are the wiggle plots
of the zero-offset traces. We can see the ghosts are mainly
removed and the algorithm works with good accuracy.

The second tested case (Figure 1b) has 9 layers and is extracted
from a velocity model provided by TOTAL. In this case, we
choose the sources at 5m and 7m and receivers at 10m and
15m, so the events and their ghosts are overlapping. The data,
its receiver side deghosted result, and both source and receiver
side deghosted result are in Figures 3a, 3b, and 3c, respec-
tively. Figures 3d, 3e, and 3f represent the wiggle plots of
the zero-offset traces and Figures 3g, 3h and 3i are the spec-
trum plots of their wavelets. The notch at c0/(2d) = 1500/(2∗
12)hz = 62.5hz is removed after receiver side deghosting and

© 2012 SEG DOI  http://dx.doi.org/10.1190/segam2012-1246.1
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(a) Velocity model (provided by
Total)

Green’s theorem deghosting

0

1

2

3

-2000 0 2000 4000 6000

(a) Before deghosting

0

1

2

3

-4000 -2000 0 2000 4000

(b) Receiver deghosted

0

1

2

3

-4000 -2000 0 2000 4000

(c) Source & receiver deghosted

0

0.2

0.4

0.6

0.8

1.0

0

(d) Before deghosting

0

0.2

0.4

0.6

0.8

1.0

0

(e) Receiver deghosted

0

0.2

0.4

0.6

0.8

1.0

0

(f) Source & receiver deghosted

0

20

40

60

80

0

(g) Before deghosting

0

20

40

60

80

0

(h) Receiver deghosted

0

20

40

60

80

0

(i) Source & receiver deghosted

Figure 3: Deghosting for model two.

both receiver side deghosting and source side deghosting re-
cover more low frequency information.

Results are positive and encouraging for both receiver side
deghosting and source side deghosting when the data with dual
sources and dual receiver cables are provided. Below we ex-
amine the consequences of two issues associated with the input
data:

1. One issue is that in common practice, the derivative of
the field (either through direct measurement or through
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Figure 4: Source deghosting using D f s = 0 for model two.

dual cables) may not be available, especially on the
source side. The industry trend has data with over/under
streamers available today, and sometimes over/under
sources, as well. However, Zhang (2007) uses Green’s
theorem to develop and exemplify a method that com-
pletely removes receiver and source ghosts with over/under
streamers/receivers or with a single streamer and a source
signature. The method does not require over/under sources.
Another method that can be applied is based on the no-
tion that the pressure field on the free surface D f s is
zero. This information can be used as another cable.
Figure 4 shows the result when this property is used
for model two. Comparing with the result using dual
sources (Figures 3), the source ghosts are satisfactarily
removed, although some high frequency information
has been damaged. For low-frequency, this could be
satisfactory.

2. Another issue is the sensitivity to how accurate the depth
of the cable is known due to a division if over/under ca-
bles are used. The Green’s theorem method is robust
to depth sensitivity (Zhang, 2007). Figure 5 compares
the results when different depth intervals are used for
receiver deghosting. The ghosts are well removed and
not visible after deghosting when the cable intervals
are 2 meters, 5 meters, or 10 meters. When the interval
gets to 20 meters, the ghosts are still largely attenuated
(comparing with Figures 2a and 2d).

IMPACT ON FREE-SURFACE MULTIPLE ELIMINATION

ISS free-surface multiple elimination method has the theoret-
ical capability of predicting the exact phase and amplitude of
multiples if its pre-requisites (source and receiver deghosting
in particular) are satisfied. Figure 6 shows the result of apply-
ing the deghosted data into ISS free-surface multiple elimina-
tion algorithm. The right half is generated by directly subtract-
ing the prediction from the input without any adaptive subtrac-
tion tool. We can see that all free-surface multiples are well
attenuated and primaries are not touched.

© 2012 SEG DOI  http://dx.doi.org/10.1190/segam2012-1246.1
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(b) Spectrum plots of the wavelets

Figure 4: In (b), the left panel is before deghosting, the middle panel is receiver deghosted, and the
right panel is source and receiver deghosted. Both receiver deghosting and source deghosting recover
more low-frequency information. (Zhiqiang Wang et al., 2012)

Figure 5: Model used for Figures 6 - 9
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Figure 6: Free-surface-multiple elimination without prior removal of ghosts (Jinlong Yang reported
in Lin Tang et al., 2013)
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Figure 7: Free-surface-multiple elimination with prior removal of ghosts (Jinlong Yang reported in
Lin Tang et al., 2013)

wavelet has been removed, and (3) receiver and source deghosting has been performed.

2 Current status

The current status of multiple removal for marine seismic data is summarized in Table 1. Row (1):
Satisfaction of the prerequisites of the ISS (using Green’s theorem) is relatively mature. Estimation

15



Multiples: part I M-OSRP13-14

FSM1

FSM2

P1

(a) Input data

0.5

1.0

1.5

2.0

T
im

e(
s)

500 1000 1500
Trace Number

(b) ISS FSM prediction

0.5

1.0

1.5

2.0

T
im

e(
s)

500 1000 1500
Trace Number

(c) After a simple subtraction

Figure 8: Impact of the source wavelet on ISS free-surface-multiple elimination without wavelet
deconvolution (Jinlong Yang and Weglein, 2012).
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Figure 9: Impact of the source wavelet on ISS free-surface-multiple elimination with wavelet de-
convolution (Jinlong Yang and Weglein, 2012).

of the source wavelet and removal of ghosts have been tested on simple synthetic data, SEAM data,
and field data (Jingfeng Zhang, 2007; Mayhan, 2013). Row (2): Free-surface-multiple elimination
is also mature. In principle, the ISS free-surface-multiple-prediction algorithm (equations 1 and
2) gives the exact amplitude and phase of the free-surface multiples. Row (3): Internal-multiple
attenuation is also mature; it was tested on field data by Matson et al. (1999), Terenghi et al. (2011),
and Ferreira (2011). Work is underway to eliminate spurious events (Chao Ma and Weglein, 2014a)
and to move attenuation to elimination (Yanglei Zou and Weglein, 2014a,b). Row (4): Adaptive
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Figure 10: Model used for Figures 11 and 12

subtraction using energy minimization is inconsistent; if multiples and primaries are separated, it
works, but if multiples are proximal to or overlap the primaries, it fails. A possible replacement
for energy-minimization adaptive subtraction has been proposed for free-surface-multiples (Weglein,
2012).

Method Comment/status
1 Prerequisites Relatively mature

(estimate wavelet, deghost)
2 Free-surface multiples Eliminate
3 Internal multiples Attenuate
4 Adaptive steps Energy

minimization

Table 1: The current status of multiple removal (marine seismic data).

The current capability of multiple removal for onshore seismic data is summarized in Table 2. Row
(1): Use of Green’s theorem to satisfy ISS prerequisites, as is currently performed for marine seismic
data, is discussed in Jing Wu and Weglein (2014b), and a method for finding the reference velocity
in the near surface is discussed in Lin Tang and Weglein (2014). Row (3): The results of testing
ISS internal-multiple attenuation on land are encouraging; its “performance was demonstrated with
complex synthetic and challenging land field data sets with encouraging results, where other internal
multiple suppression methods were unable to demonstrate similar effectiveness.” (Qiang Fu et al.,
2010, page 3457) Row (4): “The examples of this paper point to the pressing need to improve the
prediction and reduce the reliance on adaptive steps, since the latter can fail precisely when you
have interfering events.” (Qiang Fu et al., 2010, page 3458)

Code currently available on the sponsors-only portion of mosrp.uh.edu includes Cagniard-de Hoop
forward modeling (1D acoustic earth, line source), finite-difference forward modeling (2D acoustic
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Figure 11: Impact of the source wavelet on ISS internal-multiple attenuation without wavelet de-
convolution (Jinlong Yang and Weglein, 2014).
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Figure 12: Impact of the source wavelet on ISS internal-multiple attenuation with wavelet decon-
volution (Jinlong Yang and Weglein, 2014).

earth, line source), Green’s-theorem marine-data preprocessing (2D or 3D data sets), ISS free-
surface-multiple elimination (3D data sets), ISS internal-multiple attenuation (1.5D or 2D data
sets), and adaptive-subtraction (applicable to ISS free-surface-multiple elimination).

Data sampling issues are in the Appendix.
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Method Comment/status
1 Prerequisites Find reference

velocity iteratively
(estimate wavelet, deghost)

2 Free-surface multiples Eliminate
3 Internal multiples Attenuate
4 Adaptive steps Energy minimization

Table 2: The current capability of multiple removal (onshore seismic data).

3 Future plans

A three-pronged strategy will address the current outstanding issues listed in Tables 1 and 2 (We-
glein, 2014a,b). (1) Develop the ISS prerequisites that are direct and do not require subsurface in-
formation to predict the reference wavefield (wavelet and radiation pattern) and produce deghosted
data (in particular, for onshore and ocean-bottom acquisition); (2) Develop ISS algorithms to re-
duce/eliminate so-called spurious events (Appendix) and to eliminate (rather than attenuate) in-
ternal multiples; and (3) Develop a replacement for the energy-minimization criterion for adaptive
subtraction; that replacement should derive from, and always align with and serve, the inverse-
scattering-series free-surface and internal-multiple algorithms. This three-pronged strategy repre-
sents a consistent and aligned processing chain, with one single objective: providing a direct and
practical solution to the removal of all multiples, without requiring any subsurface information and
without damaging primaries. All three prongs are being progressed: (1) in Jing Wu and Weglein
(2014a,b), (2) in Yanglei Zou and Weglein (2014a,b) and Chao Ma and Weglein (2014a), and (3) in
Weglein (2012). This ideal status of multiple removal (for marine seismic data) is summarized in
Table 3.

Method Comment/status
1 Prerequisites Mature

(estimate wavelet, deghost)
2 Free-surface multiples Eliminate
3 Internal multiples Eliminate
4 Adaptive steps Consistent with 1-3

Table 3: The ideal status of multiple removal (for marine seismic data).

The energy-minimization adaptive-subtraction criterion, while not derived as a property of the free-
surface-multiple-elimination or the internal-multiple-attenuation criteria, is useful for completing
the matching between multiple prediction and the actual multiple, when events are separated and
there are no higher-order multiples in the vicinity, and only a first-order algorithm is being used.
Part of the three-pronged strategy is to use the terms in the respective ISS subseries that can

19



Multiples: part I M-OSRP13-14

accommodate the order of multiple that is anticipated in the target region. Given deghosted and
wavelet-deconvolved data, there is a stable closed form that eliminates all orders of free-surface
multiples at once (Weglein and Dragoset, 2005). With proximal and/or interfering events the
energy-minimization criterion fails, independently of how it is implemented (because of interfering
proximal events), and a new set of criteria is sought for the adaptive step that derives from, aligns
with, and always supports the multiple subseries. (A candidate to replace energy-minimization
adaptive subtraction for free-surface multiples is given in Weglein (2012).)

4 Conclusions

This paper provides (1) an overview of removal of multiples from marine data and (2) a motivation
and a preview for removal of multiples from onshore data. In principle, the ISS free-surface-multiple-
prediction algorithm (equations 1 and 2) gives the exact amplitude and phase of the free-surface
multiples, and the ISS internal-multiple-attenuation algorithm (equation 3) is the high-water mark
of current internal-multiple-attenuation capability. The quality of their output assumes that their
requirements are met — i.e., that the source wavelet has been deconvolved and ghosts have been
removed.
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Appendix

A ISS free-surface-multiple elimination

A so-called isolated-task subseries to predict free-surface multiples is extracted from the ISS. For
example, the 2D form of the subseries is

D′(kg, ks, ω) =

∞∑

n=1

D′n(kg, ks, ω), where (1)

D′n(kg, ks, ω) =
1

iπρ0A(ω)

∫ ∞

−∞
dk q exp (iq(εg + εs))D

′
1(kg, k, ω)D′n−1(k, ks, ω) (2)

for n = 2, 3, 4, . . . kg, ks, and the ω values represent the Fourier conjugates of receiver x coordinate,
source x coordinate, and time; εg and εs are the (fixed) receiver and source depths below the free
surface; the obliquity factor, q, is given by q = sgn(ω)

√
ω2/c20 − k2; and c0 is the reference velocity.

This algorithm requires only the source signature A(ω) and source- and receiver-deghosted (and
source-wavelet deconvolved) data D′1(kg, k, ω) as its input. The free-surface multiples are predicted
order-by-order (for n = 2, 3, 4, . . .) and then are added together (equation 1) to give the deghosted
and free-surface-demultipled data. For a more detailed discussion please see Section 5.4 of Weglein
et al. (2003). Equation 2 can be modified to accommodate an anisotropic extended source ρ(k, q, ω)
(Jinlong Yang et al., 2013).
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B ISS internal-multiple attenuation

The 2D form of the ISS internal-multiple leading-order attenuator is (Araújo, 1994; Weglein et al.,
2003)

b3(kg, ks, qg + qs)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk1 exp (iq1(εs − εg))dk2 exp (iq2(εg − εs))

×
∫ ∞

−∞
dz1 exp (i(qg + q1)z1)b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2 exp (i(−q1 − q2)z2)b1(k1,−k2, z2)

×
∫ ∞

z2+ε1

dz3 exp (i(q2 + qs)z3)b1(k2,−ks, z3). (3)

The vertical wave numbers are defined by qi = sgn(ω)
√
ω2/c20 − k2i for i = s, g, 1, 2; in practice ε1, ε2

are chosen to be the wavelet; and b1 represents the data that would result from a single-frequency
incident plane wave imaged with water speed. For a more detailed discussion please see Section 6
of Weglein et al. (2003). Equation 3 can be modified to suppress spurious predictions (Chao Ma
and Weglein, 2014b,c). (The internal-multiple-attenuation algorithm assumes only primaries in its
input. the presence of internal multiples can result in the prediction of internal multiples that do
not correspond to internal multiples in the seismic data.) A new ISS algorithm is being developed
to eliminate (rather than attenuate) internal multiples (Yanglei Zou and Weglein, 2014a,b).

C Green’s-theorem wavefield separation

As is the case with the inverse scattering series, Green’s theorem also requires no a priori knowledge
of the subsurface (when used for wavefield separation). Green’s theorem can be used to remove the
reference wavefield and to estimate the source wavelet (Weglein and Secrest, 1990), and also to
remove ghosts (Weglein et al., 2002; Jingfeng Zhang and Weglein, 2005, 2006; Jingfeng Zhang,
2007; Mayhan et al., 2011, 2012; Mayhan and Weglein, 2013; Mayhan, 2013). The key equation for
Green’s-theorem wavefield separation is

P ′R(r′g, rs, ω) =

∫

MS
dS n̂ · [P (r, rs, ω)∇Gd+0 (r, r′g, ω)−Gd+0 (r, r′g, ω)∇P (r, rs, ω)], (4)

where P and n̂ · ∇P are the measured values of the pressure wavefield and its derivative normal to
the measurement surface; rs, r, and r′g are the locations of the source, receivers, and output point,
respectively; Gd+0 is a known analytic Green’s function; and the integration is performed over the
measurement surface. The data used in the integral in equation 4 are Fourier transformed from
r, t to r, ω; given the dense time samplings characteristic of field acquisitions, the required Fourier
transforms have not been an issue.

Capturing n̂ · ∇P requires over-under streamers with hydrophones, a dual-sensor streamer with
hydrophones and geophones, or a dual-sensor streamer with hydrophones and accelerometers. If
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measurements of n̂ · ∇P are not available and the source wavelet can be independently estimated,
yet another choice of Green’s function allows equation 4 to predict n̂ · ∇P (and a new estimate of
P ), which can be used as input to equation 4 for receiver deghosting. Similarly, if over-under sources
are not available, this process can be repeated for source deghosting, but in that case independent
estimates of the source wavelet are not needed.

D Data sampling issues

We conducted a literature search to better understand WesternGeco’s IsoMetrix acquisition, West-
ernGeco’s simultaneous sources, and ocean-bottom acquisition in order to evaluate their impact on
Green’s-theorem wavefield separation (e.g., on deghosting) and on ISS free-surface-multiple removal.
Seismic data are a function of seven variables, the source coordinates (xs, ys, zs), the receiver coordi-
nates (xg, yg, zg)„ and time t. Seismic data are often properly sampled in time and the receiver inline
direction but are undersampled in the receiver crossline direction and source inline and crossline
directions (Moldoveanu, 2010). Undersampling in the crossline direction impacts Green’s-theorem
receiver deghosting and wavelet estimation, and undersampling of shots impacts Green’s-theorem
source deghosting. Undersampling also impacts ISS free-surface-multiple removal because this al-
gorithm works with shots and receivers at every station point of the processing lattice.

The PGS GeoStreamer R© measures pressure, P , using hydrophones and measures the vertical com-
ponent of particle velocity, Vz, using geophones (Carlson et al., 2007; Tenghamn et al., 2007). The
IsoMetrix streamer measures pressure and vertical and crossline components of particle acceler-
ation, Az and Ay, by using a micro-electro-mechanical system (MEMS) (Harries, 2012; Bunting
et al., 2013; El Yadari et al., 2013; van Manen et al., 2013; WesternGeco, 2013). Hydrophone data
are good down to a couple of Hz (Long, 2014), geophone data are reliable down to something less
than 20 Hz (Cambois et al., 2009), and MEMS data are accurate down to 3 Hz (Harries, 2012). In
the range of 3 Hz to <20 Hz, it appears that the IsoMetrix streamer captures three independent
measurements (P,Az, Ay) whereas the GeoStreamer R© captures one (P ).

The WesternGeco IsoMetrix acquisition uses measurements of crossline particle acceleration and
sinc interpolation to provide more “streamers” and hence a denser grid of receiver data points. A
6.25 m × 6.25 m surface grid will give better resolution than will a 12.5 m × 75 or 100 m. (1)
The advantage of Green’s-theorem wavefield separation is that a smaller ∆x offers more flexibility
(Mayhan, 2013, section 2.3). The vertical distance between the output point and the measurement
point, ∆z = |z′g − z|, is related to the horizontal distance between traces, ∆x, by ∆z & 0.5∆x. As
the output point approaches the measurement point — i.e., as ∆z gets smaller — Gd+0 and especially
∂Gd+0 /∂z become narrower in width. For a given ∆x, too few data points may fall inside ∂Gd+0 /∂z,
and the output of equation 4 becomes less accurate. (A more detailed explanation is given in Weglein
et al., 2013.) The WesternGeco IsoMetrix streamer helps Green’s-theorem wavefield separation by
yielding a smaller ∆x. (2) However, a smaller ∆x gives a larger data set. We can take advantage
of the narrowness of Gd+0 and ∂Gd+0 /∂z to save computation time (with little loss of accuracy)
by restricting the Green’s theorem integral (equation 4) to a radius of (e.g.) 100 ∆x instead of
integrating over the whole measurement surface (Mayhan, 2013, section 2.3).

The method of simultaneous sources provides better-sampled data by firing two shots close in time.
For example, a standard “flip-flop” acquisition may alternately fire the sources every 18.75 m, which
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gives a 37.5 m shot interval in each shot line. In the method of simultaneous sources, both sources
are fired every 18.75 m, which cuts in half the inline shot interval (Beasley et al., 2012). The sources
are not quite fired simultaneously. One source is fired every 18.75 m, but the other shot is fired
with a time difference chosen randomly from a small time window. (Beasley et al. (2011) report a
time window 300 ms wide.)

The cost of placing sensors on the ocean bottom means a larger grid may be used (400 m×400 m
in deep water, Maver, 2011). Data is undersampled and less useful as input to Green’s-theorem
preprocessing and ISS processing.
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Predicting reference-medium properties from invariances in Green’s theorem
reference-wave prediction: towards an on-shore near surface medium and

reference wave prediction
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Abstract

The Inverse Scattering Series (ISS) methods require prerequisites to reach their potentials.
Seismic data preprocessing for ISS includes identifying and removing the reference wave, es-
timating the source wavelet and radiation pattern, and deghosting source and receiver. For
onshore seismic exploration, these preprocessing steps still have many serious challenges. To
study how to determine the reference velocity for land applications, I use a marine environment
as a starting point, and show that the invariance of the estimated source signature for a point
source could be a criterion for finding the correct reference velocity. In addition, for the case of
a source array, the invariance of the source wavelet in one radiation angle could be the criterion
for verifying that we have the right reference velocity.

1 Introduction

The current trend in the petroleum industry is to explore in deep water and in areas that have
complex geology, where primary and multiple events often may be interfering with or proximal to
each other. In such cases, removal of the multiple events becomes a big challenge. Inverse Scattering
Series (ISS) methods offer a direct way of removing free-surface multiples and attenuating internal
multiples without requiring any subsurface information. However, these methods have prerequisites
that need to be satisfied. The prerequisites include identifying and removing the reference wave,
estimating the source wavelet and radiation pattern, and deghosting source and receiver. In order to
deliver the high fidelity expected of ISS multiple predictions, effective preprocessing methods need
to be developed and improved (Zhang (2007), Mayhan et al. (2011), Mayhan and Weglein (2013),
Tang et al. (2013), Yang et al. (2013)).

As seismic exploration moves to increasingly complex and difficult onshore and offshore plays, there
are additional fundamental issues and challenges that need to be resolved. Among these issues
and challenges, removal of the reference wave on land is a pressing and interesting topic. Scattering
theory separates the real world into two parts: the reference medium, whose property is known, plus
a perturbation. ISS methods require that the reference medium agree with the actual medium on
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and above the measurement surface. The wave that travels in the reference medium is the reference
wave, and it does not experience the earth in its history, so it contains no subsurface information.
It is important to identify and remove reference waves before the following data-processing steps.
In inverse scattering series, the data D on the measurement surface is,

D = (G−G0)m.s.

= G0V G

= G0V G0 +G0V G0V G0 + ...

As the above equation shows, the very first step of any ISS methods (free surface multiple removal,
internal multiple removal and depth imaging) is to remove G0. From the wave equation

L0G0 = δ,

in order to predict and remove G0, we need to know L0, which is the reference medium. ISS
methods only require the reference medium information at and above the measurement surface.
For marine environment, the property of water is relatively easy to define. However, for on-shore
seismic applications, the near surface properties are often complicated and difficult to determine,
e.g., because the conditions of rocks, soil or minerals in the near surface are not easy to define due
to weathering. Strong ground roll can be generated, and it can obscure reflected seismic data. To
remove the ground roll/reference wave, the physical properties of the near surface is needed.

Green’s theorem provides a good mathematical tool for achieving these prerequisites, which are
consistent with the ISS methods they are meant to serve. My purpose in looking for a way to
determine the velocity of near surface medium on land, is to provide a foundation for the study
of onshore seismic data preprocessing methods. That task is part of the comprehensive Inverse
Scattering Series multiple removal strategy.

In order to study the complex on-shore or ocean bottom near surface property, we propose to start
from seeking criteria which can determine whether we have the correct reference medium information
or not. The criteria could be the presence of some invariance that only the correct reference velocity
would satisfy. We use a marine seismic application as a starting point to pursue this idea. First,
consider an isotropic point source, which has an isotropic source wavelet in every radiation direction.
Using Green’s theorem, we can estimate the wavelet signature everywhere below the measurement
surface. When using the correct reference velocity, the results for the wavelet should be invariant for
all output points below the measurement surface. Thus, the value of reference velocity we use in the
wavelet calculation that leads to an invariance of the estimated source wavelet is the correct reference
velocity. Furthermore, instead of a single point source, in practice, source arrays which have angle
radiation pattern are widely used in industry (Loveridge et al. (1984)). Then the invariance of the
estimated wavelet will happen when estimating the wavelet at different points along one radiation
angle. Similarly, only the correct reference velocity can lead to the invariance. Thus, the invariances
of the source wavelet indicate that we have found the correct reference velocity.

This report will discuss the criteria of predicting the reference medium properties from invariances
in Green’s theorem-based wavelet estimation, for both point source and for source array cases. A 1D
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analytic example will be shown first to explain the idea of invariance. For a point source, the source
wavelet estimated at any point beneath the measurement surface should stay the same; while for
source array data, the estimated source wavelet in one radiation angle should be invariant. These
invariances could be criteria for verifying that we have the correct reference velocity. Future study
will extend this research from the marine example to a complex, onshore elastic model.

2 Theory

2.1 Green’s theorem for wavelet estimation

The theory of wavelet estimation using Green’s theorem is first described in Weglein and Secrest
(1990). Assume that source A(ω) is placed at ~rs and the receiver is at ~r. The pressure wavefield P
satisfies the constant density acoustic wave equation in the frequency domain:

(
∇2 +

ω2

c2(~r)

)
P (~r, ~rs, ω) = A(ω)δ(~r − ~rs). (1)

In scattering theory, we treat the actual medium as if it were a combination of an unperturbed
medium, called the reference medium, and a perturbation. Induce perturbation α defined by

1

c2(~r)
=

1

c20
[1− α(~r)],

where c0 is the velocity in a homogeneous reference medium. Then Equation 1 becomes
(
∇2 +

ω2

c20

)
P (~r, ~rs, ω) =

ω2

c20
α(~r)P (~r, ~rs, ω) +A(ω)δ(~r − ~rs)

︸ ︷︷ ︸
ρ

. (2)

The right-hand side of the equation can be viewed as the source of the wavefield P , which has two
terms: the perturbation α, which generates the scattered wave Ps, and the active source A(ω), the
energy source that generates the wave P . The corresponding Green’s function satisfies,

(
∇2 +

ω2

c20

)
G0(~r, ~r′, ω) = δ(~r − ~r′). (3)

Having a causal Green’s function G+
0 , we can obtain wavefield P ,

P (~r, ω) =

∫

∞
G+

0 (~r, ~r′, ω)ρ(~r′, ω)d~r′

=

∫

∞
G+

0 (~r, ~r′, ω)
ω2

c20
α(~r′)P (~r′, ω)d~r′ +A(ω)G+

0 (~r, ~rs, ω). (4)
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The first term on the right-hand side of Equation 4 is the source that generates the difference
between the total wavefield P and the reference wavefield P0. Therefore, P0 is given by

P0(~r, ~rs, ω) = A(ω)G+
0 (~r, ~rs, ω). (5)

The difference between P and P0 is defined as the scattered wavefield Ps, which is

Ps = P − P0. (6)

Thus, Ps satisfies

Ps(~r, ~rs, ω) =

∫

∞
G0(~r, ~r′, ω)

ω2

c20
α(~r′)P (~r′, ~rs, ω)d~r′. (7)

On the other hand, from Green’s second identity, we have
∫

V
(φ∇′2ψ − ψ∇′2φ)d~r′ =

∮

S
[φ∇′ψ − ψ∇′φ] · n̂dS. (8)

Now suppose that φ = P and ψ = G0. Plugging Equation 2 and Equation 3 into Equation 8, we
have ∫

V
(P∇′2G0 −G0∇′2P )d~r′

=

∫

V

(
P (~r′, ~rs, ω)

[
−ω

2

c20
G0(~r′, ~r, ω) + δ(~r − ~r′)

]
−G0(~r′, ~r, ω)

[
−ω

2

c20
P (~r′, ~rs, ω) + ρ(~r′)

])
d~r′

=

∫

V
P (~r′, ~rs, ω)δ(~r − ~r′)d~r′ −

∫

V
G0(~r′, ~r, ω)

[
ω2

c20
α(~r′)P (~r′, ~rs, ω) + δ(~r′ − ~rs)A(ω)

]
d~r′

=

∮

S

[
P (~r′, ~rs, ω)∇′G0(~r′, ~r, ω)−G0(~r′, ~r, ω)∇′P (~r′, ~rs, ω)

]
· n̂dS. (9)

We choose the volume as the infinite space below the measurement surface, and ~r is chosen to be
below the measurement surface (inside the volume V ), as Figure 1 shows. Equation 9 becomes

P (~r, ~rs, ω) =

∫

V
G0(~r, ~r′, ω)

ω2

c20
α(~r′)P (~r′, ~rs, ω)d~r′ +

∮

S

[
P∇′G0 −G0∇′P

]
· n̂dS. (10)

When choosing G+
0 in Equation 10, let us compare Equation 10 and Equation 4. When the support

of perturbation α(~r) is within the volume V , the integral of α over infinity equals the integral
over volume V . Thus, with ~r inside the volume, the support of α is within the volume, and both
Equations 10 and 4 should give the same wavefield. Therefore,

A(ω)G+
0 (~r, ~rs, ω) =

∮

S

[
P (~r′, ~rs, ω)∇′G+

0 (~r′, ~r, ω)−G+
0 (~r′, ~r, ω)∇′P (~r′, ~rs, ω)

]
· n̂dS. (11)

Thus, source signature A(ω) can be estimated by a surface integral and then divided by the Green’s
function. Using Sommerfeld’s radiation condition for G+

0 , the wavefield contribution at ~r in V from
at the infinitely far away boundary vanishes. Then,

A(ω) =
1

G+
0 (~r, ~rs, ω)

·
∫

m.s.

[
P (~r′, ~rs, ω)∇′G+

0 (~r′, ~r, ω)−G+
0 (~r′, ~r, ω)∇′P (~r′, ~rs, ω)

]
· n̂dS. (12)
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In marine seismic exploration as shown in Figure 2, for the purpose of estimating wavelet, we choose
the reference medium as a half-space of air plus a half-space of water. Thus, Green’s function is
consist of two parts,

G0 = Gd0 +GFS0 . (13)

Equation 12 is the equation of Green’s theorem-based wavelet estimation method. ~r′ is on the
measurement surface, and ~r is the observation point, which need to be chosen as below the mea-
surement surface. This equation is valid for any points below the cable. Both the numerator and
denominator of Equation 12 are functions of ~r, ~rs and ω. However, their quotient A(ω) is not a
function of the observation point ~r, when we are calculating it correctly. Using this property, we
can have the criterion for having the correct reference velocity. If we use a wrong reference velocity
in the Green’s function, it will break this property. The quotient will become a function of ~r. Next,
an analytic example in 1D earth will be shown to illustrate this idea.

water 

sr

Earth 

r

Measurement surface 

V 

S 

Figure 1: Choosing V as the infinite space below the measurement surface and ~r below the cable
(inside the volume).

3 1D analytical example

In this section, a 1D analytical example of wavelet estimation will be given. 1D means the wave
propagates only in z direction, and the Earth is also only has z direction variance. Therefore, the
measurement surface is one point at depth z′ = a. The surface integral changes to the value of
(P∇G0 − G0∇P ) at the two ends: infinite z′ = ∞ and the measurement surface z′ = a. The
configuration is shown in Figure 3. As discussed above, the prediction point z is chosen as below
the measurement surface z′ = a. Therefore, z > a > zs. The existence of free surface is equal to an
image source. Therefore, the Green’s function satisfies the wave equation,

(
d2

dz2
+ k2)G0(z, z

′, ω) = δ(z − z′)− δ(z + z′). (14)
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air 

water 

sr

Earth 

r

Measurement surface 

V 

S 

Figure 2: Marine seismic exploration configuration.

So Green’s function G0 and its normal derivative dG0/dz
′ in 1D become,

G0(z, z
′, ω) =

exp(ik|z − z′|)
2ik

=
exp(ik(z − z′))− exp(ik(z + z′))

2ik
, (15)

d

dz′
G0(z, z

′, ω) =
− exp(ik(z − z′))− exp(ik(z + z′))

2
. (16)

In this example, there is no perturbation below the measurement surface. Therefore, the measured
wavefield P equals the reference wave P0. On the measurement surface z′ = a, the wavefield P and
its normal derivative dP/dz′ are,

P (z′, zs, ω) = A(ω)G0(z
′, zs, ω) (17)

= A(ω)
exp(ik(z′ − zs))− exp(ik(z′ + zs))

2ik
, (18)

d

dz′
P (z′, zs, ω) = A(ω)

d

dz′
G0(z

′, zs, ω) (19)

= A(ω)
exp(ik(z′ − zs))− exp(ik(z′ + zs))

2
. (20)

So the predicted reference wave P0(z, zs, ω) is,

P0(z, zs, ω) = |∞z′=a
[
(z′, zs, ω)

d

dz′
G0(z, z

′, ω)−G0(z, z
′, ω)

d

dz′
P (z′, zs, ω)

]
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= 0−
[
A(ω)

[exp(ik(a− zs))− exp(ik(a+ zs))]

2ik

[− exp(ik(z − a))− exp(ik(z + a))]

2

− [exp(ik(z − a))− exp(ik(z + a))]

2ik
A(ω)

[exp(ik(a− zs))− exp(ik(a+ zs))]

2

]

= A(ω)
1

2ik
[exp(ik(z − zs))− exp(ik(z + zs))]. (21)

(22)

Therefore,

P0(z, zs, ω)

G0(z, zs, ω)
=
A(ω) 1

2ik [exp(ik(z − zs))− exp(ik(z + zs))]
1
2ik [exp(ik(z − zs))− exp(ik(z + zs))]

= A(ω) (23)

The above equation shows that even though both P0 and G0 depend on the prediction point z,
their quotient A(ω) is independent of z. When a wrong reference velocity c′0 is used to predict the
wavelet, Green’s functions in the above equation contains a wrong wavenumber k′ = ω/c′0. We now
have,

P0(z, zs, ω) = |∞z′=aP (z′, zs, ω) d
dz′G0(z, z

′, ω)−G0(z, z
′, ω) d

dz′P (z′, zs, ω)

= 0−
[
A(ω)

[exp(ik(a− zs))− exp(ik(a+ zs))]

2ik

[− exp(ik′(z − a))− exp(ik′(z + a))]

2

− [exp(ik′(z − a))− exp(ik′(z + a))]

2ik′
A(ω)

[exp(ik(a− zs))− exp(ik(a+ zs))]

2

]

= A(ω)(
1

4ik
+

1

4ik′
)[exp(i(k′z − kzs + (k − k′)a))− exp(i(k′z + kzs) + (k − k′)a))].

(24)

So the wavelet becomes,

P0(z, zs, ω)

G0(z, zs, ω)
=
A(ω)( 1

4ik + 1
4ik′ )[exp(i(k′z − kzs + (k − k′)a))− exp(i(k′z + kzs) + (k − k′)a))]

1
2ik′ [exp(ik′(z − zs))− exp(ik′(z + zs))]

(25)

Now using the wrong reference velocity to calculate the wavelet, the result of A(ω) depends on the
observation point z. So the property of invariance no longer exists. By observing the invariance of
predicted wavelet at different output point under the cable, we can determine if we have the correct
reference velocity or not. We use a marine environment as an example to test this idea.

3.1 Radiation pattern

In the previous section, we focused on solving the wavelet from a point source at δ(~r− ~rs). In a more
general case, a extended source array that consists of several point source could be used in seismic
exploration. In this case, the source displays a radiation pattern in different radiation angles. The
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Figure 3: A 1D example

radiation pattern from a single effective point source could be estimated by assuming that A(ω) is
a function of the radiation angle θ (using far field approximation).

Assume that a general extended source ρ(~r) as Figure 4 shows. Wavefield at ~r generated from this
source array can be calculated from the integral,

P0(~r, ω) =

∫
G0(~r, ~r′, ω)ρ(~r′)d~r′. (26)

In 3D propagation, Green’s function in frequency domain can be written as

G0(~r, ~r′, ω) =
eik|~r−~r

′|

|~r − ~r′|
. (27)

In the far field, |~r| >> |~r′|, we have approximation,

|~r − ~r′| =

√
(~r − ~r′)2

=

√
r2 − 2~r · ~r′ + r′2

= r[1− 2~r · ~r′
r2

+
r′2

r2
]1/2

= r(1− ~r · ~r′
r2

+
r′2

2r2
+ ...)

= r − n̂ · ~r′ +O(
1

r
). (28)

The above equation uses Taylor series (1 + x)1/2 = 1 + 1
2x+O(x2), and n̂ is the unit vector in the
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direction of ~r. And similarly,

1

|~r − ~r′|
=

1

r
+
n̂ · ~r′
r2

+ ... =
1

r
+O(

1

r2
). (29)

Then in the far field, Equation 26 becomes

P0(~r, ω) =

∫
eik(r−n̂·~r

′)

r
ρ(~r′)d~r′

=
eikr

r

∫
e−ikn̂·

~r′ρ(~r′)d~r′

=
eikr

r
ρ̃(kn̂). (30)

Therefore, in the far field if we process seismic data generated from the source array as if a point
source, we can get the source wavelet

A(ω, θ) =
P0

G0
= ρ̃(kn̂).

Since n̂ is the direction from the source to the observation point, the estimated wavelet result will
display variances in different radiation angle. While in one radiation angle, wavelet A(ω, θ) will be
the same. This could be a criterion of determining the correct reference velocity. If using a wrong
reference velocity, this invariance at one radiation angle will not be satisfied.

x 

z 

0 
r’ 

r 

θ 

y 

Figure 4: A general extended source.

4 Point source

In this test, we use the Cagniard-de Hoop method to model over-under cable data. Then using the
Green’s theorem of Equation 12, we estimate wavelet A(ω), at different points at a fixed depth. We
predict the estimated wavelet results by using different reference velocities:
(1) the correct reference velocity c0 = 1500m/s;
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(2) a wrong reference velocity c0 = 1490m/s;
(3) an additional wrong reference velocity c0 = 1450m/s.
The estimated reference wavefields P0 are shown in Figure 3, and the corresponding wavelet are
presented in Figure 4. Figure 5 indicates that the wrong reference velocities also lead to errors
in the prediction of P0. The estimated source wavelet results show that when using the correct
reference velocity, the wavelet displays invariance at different offset, while wrong velocities give
different wavelet prediction at different output points.

Therefore, only the correct reference velocity can result in the invariance of estimated wavelet. When
the reference velocities become progressively more incorrect, the errors of the wavelet invariance also
become larger. This conclusion will also help us in finding the correct reference velocity.

(a) (b) (c) 

Figure 5: P0 estimated using (a) correct c0 = 1500m/s, (b) wrong c0 = 1490m/s, (c) wrong
c0 = 1450m/s

5 Source array

In this section, instead of using a point source, I will test data generated by a source array. The
source array consists of 7 point sources separated at 3 m, as shown in Figure 7. First, we will
estimate source wavelet along a horizontal cable, whose radiation angles are different. We predict
source wavelet at depth 56 m, from offset 0 m to 606 m, whose radiation angles are from 0◦ to
85◦. The results in Figure 7 show the radiation pattern in different offset (radiation angle). Next,
we estimate the wavelet A(ω, θ) in one radiation angle. The estimated wavelet in angle 5.8◦, using
different velocities, is shown in Figure 9. As with the conclusion above, we can see that only the
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(a) 

(b) 

(c) 

Figure 6: A(t) estimated using (a) correct c0 = 1500m/s, (b) wrong c0 = 1490m/s, and (c) wrong
c0 = 1450m/s

correct velocity gives us the invariance of the source array wavelet in one angle, while the wrong
reference velocity will lead to differences of the wavelet in one radiation angle.
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Figure 7: Source array

Figure 8: Radiation pattern of the source array in Figure 7, estimated from offset 0m to 606m.

6 Conclusions

We have shown that an output point invariance of a wavelet estimated by using Green’s theorem
could be a criterion for determining the correct reference velocity. For a point source, the invariance
occurs for the output point anywhere below the measurement surface, while for data with source
array and radiation pattern, the invariance is for output points along one radiation angle. Using
marine seismic application as a starting point, this paper shows that invariances of Green’s theorem-
based wavelet estimation could be a criterion of determining the reference velocity. Using similar
thinking, in the future study we will focus on solving the complex onshore or ocean-bottom near
surface medium problems. For on-shore or ocean bottom problems, understanding of the near
surface property could enable us to predict and remove the ground roll/reference wave on land, and
thereby enhance the capability of subsequent multiple removal processing steps for the challenge of
on-shore multiple attenuation.
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(a) (b) 

Figure 9: Wavelet estimated at depths 36m, 56m, 76m, 96m, 116m, 136m, and 156m, at the same
radiation angle and using (a) the correct reference wave c0 = 1500m/s and (b) a wrong reference
velocity c0 = 1450m/s.
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Elastic Green’s theorem preprocessing for on-shore internal multiple
attenuation: theory and initial synthetic data tests
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Abstract

Prerequisites are important for the Inverse Scattering Series (ISS) multiple removal method
that assumes the reference wavefield has been removed and the source wavelet has been de-
convolved. This paper derives the elastic Green’s theorem reference wave prediction algorithm,
which extends the off-shore acoustic to the on-shore elastic wavefield separation, in preparation
for on-shore ISS internal multiple attenuation.

1 Introduction

Weglein (2013) proposes a three-pronged strategy to respond to the current pressing challenges in
removing multiples: (1) develop the ISS prerequisites for predicting the reference wavefield and
producing deghosted data that are direct and do not require subsurface information; (2) develop
internal multiple elimination algorithms from the ISS; and (3) develop a replacement for the energy-
minimization criteria for adaptive subtraction. For part (1), Green’s theorem preprocessing has
documented effectiveness for off-shore plays (e.g., Weglein et al., 2002; Zhang, 2007; Mayhan et al.,
2012; Mayhan and Weglein, 2013; Tang et al., 2013; Yang et al., 2013).

For on-shore plays, because of their complex structures with lateral variation, as well as significant
ground roll, there are more fundamental issues and challenges for resolving the near surface problem.
Among these issues and challenges, identification and removal of the reference wave is one pressing
and essential topic. Scattering theory separates the real world into two parts: the reference medium,
whose property is known, plus a perturbation. The wave that travels in the reference medium is
called the reference wave, which does not experience the earth that we are interested in (Weglein
et al., 2003; Tang and Weglein, 2014). Especially for on-shore, the ground roll is the main energy
of the reference wave and can obscure the reflections. In addition, the reference wave contains
the source signature information, which is important and will be used for deconvolution before the
subsequent ISS multiple removal. Therefore, it is an important step to identify and remove the
reference wavefield on land.
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Matson (1997) provides the ISS free surface multiple elimination algorithm and internal multiple at-
tenuation algorithm in PS space, i.e., by using potentials rather than displacements. He assumes the
reference wave has been removed by using a linear mute; however, the linear mute may harm/destroy
useful information, especially when the reference wave and the scattering wave are seriously inter-
fering with each other. Weglein and Secrest (1990) propose the reference wave prediction method
for elastic media based on Green’s theorem, and following that they derive the wavelet estimation
algorithm in displacement space. When the medium is assumed to consist of a homogeneous elastic
whole-space, Jiang et al. (2013) test the algorithm.

In order to simulate the land acquisition situation, we choose two homogeneous half spaces as the
reference medium, an acoustic half-space over an elastic half-space. We locate the source in the
acoustic medium and receivers in the elastic medium. The perturbation will be in the lower elastic
half-space. By using Green’s second identity, we derive the algorithm to separate the reference
wave and scattering wave in PS space. In this paper, the algorithms are derived in both the space-
frequency domain and the wavenumber-frequency domain. The wavelet can be estimated from the
predicted reference wave. Numerical tests are shown to evaluate the accuracy of the algorithm
for predicting the source wavelet for this acoustic over elastic half-space problem that models the
on-shore play acquisition. The results are positive and encouraging.

2 Background for 2D Elastic Medium

We are deriving the wavefield-separation method for on-shore application and we start with the

elastic formulation. For convenience, the basis is changed from u =

(
ux
uz

)
to Φ =

(
φP

φS

)
.

u represents the displacement, constituting with x and z components; whereas Φ has potential
components for P wave and S wave. The detail for the basis transform is shown in appendix A.

In PS space, the basic wave equations (Weglein and Stolt, 1995; Zhang, 2006) are

L̂Φ = F, (1)

L̂Ĝ = δ, (2)

L̂0Φ0 = F, (3)

L̂0Ĝ0 = δ, (4)

where L̂ and L̂0 are the differential operators that describe the wave propagation in the actual
medium and the reference medium, respectively. F is the source term. Ĝ and Ĝ0 are the corre-
sponding Green’s function operators for the actual and reference media.

For a homogeneous medium,

L̂0 =

(
52 + ω2

α2
0

52 + ω2

β2
0

)
=

(
L̂P0

L̂S0

)
, (5)

44



Multiples: part I M-OSRP13-14

where α0 and β0 are P wave velocity and S wave velocity, respectively,

and

Ĝ0 =

(
ĜP0

ĜS0

)
. (6)

Equations 5 and 6 are diagonal and zeros are omitted for clarity. However, in an actual inhomoge-
neous medium, Ĝ is no longer a diagonal matrix, but has a form

Ĝ =

(
ĜPP ĜPS

ĜSP ĜSS

)
. (7)

For the superscripts, the right one represents the wave type of source side, whereas the left one
represents the wave type of receiver side.

3 Green’s Theorem Wavefield Separation Algorithm in PS Space

3.1 Description of the Problem

Transforming the elastic wave equations from displacement space to PS space, we have

L̂Φ = F,

L̂0Ĝ0 = δ,

L̂ = L̂0 − V̂ . (8)

The basic form of these equations is the same as that for the acoustic case. On the basis of the
successful applications of Green’s theorem wavefield separation to the acoustic case (e.g., Zhang,
2007; Mayhan et al., 2012), it is feasible to apply the Green’s theorem wavefield separation algorithm
to the elastic medium in a similar way. The reference medium (L̂0) can be chosen for different
objectives. To separate the reference wavefield and the scattering wavefield, the portion of the
reference medium above the measurement surface should have the same properties that the actual
medium has.

For on-shore acquisition, we assume that the source is located slightly above the earth’s surface
(e.s.), and the geophone is in the earth but close to the earth’s surface as shown in Fig.1. Actually,
because of weathered layer and tundra, the properties of the near surface can be complicated, with
laterally varying densities and velocities. For this initial study, we assume that the medium, which is
below the earth’s surface and above the measurement surface (m.s.), is homogeneous. The reference
wave can be predicted in any point inside the volume in Fig.1 by using Green’s theorem.
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Figure 1: On-shore acquisition. ρ is the density, γ is the bulk modulus, µ is the shear modulus, α
is the P wave velocity, and β is the S wave velocity

3.2 Reference Wavefield Prediction in PS Space

In Fig.2, the source (rs) is above the earth’s surface, i.e., the boundary, receiver (r′) is on the
measurement surface, and the prediction location is represented by r. The reference medium is
chosen as a discontinuous two-half-space medium; above the boundary is homogeneous air and
below is homogeneous elastic. A hemispherical surface integral upper bounded by the measurement
surface will separate the total wave Φ into the reference wave Φ0 and the scattering wave ΦS . The
prediction in the volume is the reference wave Φ0 as shown in Fig.2.

Figure 2: Volume enclosed (blue dashed line) for reference wavefield prediction at r in the volume
and r is under the measurement surface that is represented by r′.

The elastic Green’s theorem algorithm in the space-frequency domain for the reference wave pre-
diction in the volume is

Φ0(r, rs) =

∮ (
Φ(r

′
, rs) · ∇

′
Ĝ0(r

′
, r)−∇′Φ(r

′
, rs) · Ĝ0(r

′
, r)
)
· n̂dS′, (9)

where Φ0(r, rs) =

(
ΦP
0 (r, rs)

ΦS
0 (r, rs)

)
, Φ(r, rs) =

(
ΦP (r, rs)
ΦS(r, rs)

)
, and Green’s function for the reference
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medium in the (r,ω) domain is

Ĝ0(r
′
, r)

=

(
ĜP0 (r′ , r) + ĜPP0 (r′ , r) ĜPS0 (r′ , r)

ĜSP0 (r′ , r) ĜS0 (r′ , r) + ĜSS0 (r′ , r)

)

=
1

2π

∫
eikx(x

′−x)dkx


(

eiν2|z
′−z|

2iv2
0

0 eiη2|z
′−z|

2iη2

)
+


 Ṕ P̀ eiν2zeiν2z

′

2iν2
ŚP̀ eiη2zeiν2z

′

2iη2

Ṕ S̀ e
iν2zeiη2z

′

2iν2
ŚS̀ e

iη2zeiη2z
′

2iη2




 ,

(10)

where Ṕ P̀ , Ṕ S̀, ŚP̀ , ŚS̀ represent the reflection coefficients along the boundary, respectively, and

ν2 =

{ √
k2α2
− k2x if kx < kα2

i
√
k2x − k2α2

if kx > kα2

kα2 = ω
α2

,

η2 =





√
k2β2 − k2x if kx < kβ2

i
√
k2x − k2β2 if kx > kβ2

kβ2 = ω
β2

.

Since both Φ and Ĝ0 in the integral are tensors, the symbol ′·′ represents a tensor product. (The
derivation of the Green’s function in PS space and Green’s theorem reference wavefield separation
in PS space are shown in the appendixes B and C.)

If the measurement surface is horizontal, n̂ = (0,−1) and represents the outward normal vector
directed upward. Equation 9 can be simplified as:

Φ0(r, rs) = −
∫ (

Φ(r
′
, rs) · ∂z′Ĝ0(r

′
, r)− ∂z′Φ(r

′
, rs) · Ĝ0(r

′
, r)
)
dx′. (11)

Using the reciprocity of the Green’s function and Fourier transforming over x, the algorithm in the
wavenumber-frequency domain for the reference wave prediction in the volume can be obtained:

Φ̃0(kx, z, rs) = −Φ̃(kx, z, rs) · ∂z′ ˜̂
GT0 (kx, z, z

′) + ∂z′Φ̃(kx, z, rs) · ˜̂
GT0 (kx, z, z

′), (12)

where ˜̂
GT0 is the transpose of ˜̂

G0.

With the reference wave separated from the total wave, the wavelet A(ω) can be estimated. A point
isotropic source is used here. Since

(
ΦP
0 (r, rs, ω)

ΦS
0 (r, rs, ω)

)
=

(
A(ω)ĜPP0 (r, rs, ω)

A(ω)ĜSP0 (r, rs, ω)

)
, (13)

A(ω) can be obtained by either

A(ω) =
ΦP
0 (r, rs, ω)

ĜPP0 (r, rs, ω)
or A(ω) =

ΦS
0 (r, rs, ω)

ĜSP0 (r, rs, ω)
, (14)
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where

ĜPP0 (r, rs, ω) =
1

2π

∫
P̀ P̀

e−iν1zseiν2z

2iv1
eikx(x−xs)dkx,

ĜSP0 (r, rs, ω) =
1

2π

∫
P̀ S̀

e−iν1zseiη2z

2iν1
eikx(x−xs)dkx,

(15)

and ν1 =

{ √
k2α1
− k2x if kx < kα1

i
√
k2x − k2α1

if kx > kα1

kα1 = ω
α1

,

and P̀ P̀ , P̀ S̀ represent the transmission coefficients along the boundary, respectively.

4 Numerical Evaluation

Since the methodology in this paper chooses the reference medium above the earth’s surface to
be acoustic, either fluid (water) or air can be chosen as the medium above the earth’s surface.
Those two cases would correspond to ocean bottom and on-shore applications, respectively. In this
section, two models are chosen to evaluate Green’s theorem wavefield separation algorithm, one is
water/elastic, and the other is air/elastic.

4.1 Water/Elastic Model

A water/elastic model is first selected to examine the accuracy of the algorithm. The parameters
are listed in Table 1. The water/elastic boundary is at depth 0m, the source’s depth is -5m, and
the measurement’s depth is 0m (on the boundary) but coupled with the lower elastic. The trace
interval is 2m.

Layer Number P Velocity (m/s) S Velocity (m/s) Density (kg/m3)
1 1500 0 1000
2 2250 1200 2000

Table 1: The water/elastic model parameters

Since there is no perturbation from earth in this model, the reference medium is the same as the
actual one. Therefore, if the prediction point in the elastic medium is close to depth 0m, the
predicted reference wave should be the same as the total wave. This will serve as a criteria later to
test the algorithm.

The P wave is produced by source in the water, and the transmitted P and S waves will be collected
by the receivers in the elastic medium. The synthetic data are generated by multiplying a wavelet
with the analytical forms of Green’s function in the frequency domain (equation 13), shown in
Fig.3(a) for total P wave and Fig.4(a) for total S wave. The most significant energy of the total
wave is surface waves since the source and receivers are very close to the boundary. Here the surface
wave is Scholte wave, which are generated at the boundary between the fluid and elastic earth.
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The predicted reference P wave (P0) and S wave (S0) are listed in Fig.3(b) and Fig.4(b), respectively,
and as anticipated are similar to the input data. There are some artifacts with weak energy, which
can be seen in Fig.3(b) and Fig.4(b). They are caused by the truncation on wavenumber (kx) during
the calculations to keep the stability of the numerical results. The differences between total waves
and predicted reference waves are obtained by subtracting the reference waves from total waves and
they are shown as Fig.3(c) and Fig.4(c). It’s clearly to find Scholte waves have been effectively
removed.

After obtaining the reference wave, the wavelet can be estimated by using equation 14. The results of
comparisons between the actual wavelet (the one used to generate the total wavefield and represented
by red line in Fig.3(d)) and the wavelet estimated from P0 at offset 400m (blue line in Fig.3(d)),
and the actual wavelet (red line in Fig.4(d)) and the wavelet estimated from S0 at offset 400m (blue
line in Fig.4(d)) further confirm the accuracy of the wavelet estimation algorithm.

4.2 Air/Elastic Model

An air/elastic model is also selected to examine the accuracy of the algorithm. The parameters are
listed in Table 2. Same as previous air/water model, the water/elastic boundary is at depth 0m, the
source’s depth is -5m, the measurement’s depth is 0m (on the boundary) but coupled with the lower
elastic, and the prediction point is located on the measurement surface, so the predicted reference
wave should also be the same as the total wave for this example, without the perturbation existing
under the measurement surface.

Layer Number P Velocity (m/s) S Velocity (m/s) Density (kg/m3)
1 340 0 3
2 2250 1200 2000

Table 2: The air/elastic model parameters

The synthetic input data for total P and total S are similarly generated as in the first case, as shown
in Fig.5(a) and Fig.5(d). The predicted reference waves are shown in Fig.5(b) for P0 and Fig.5(e)
for S0. The subtraction results between total waves and reference waves are shown as Fig.5(c) and
Fig.5(f). Similar to the previous example, the surface waves have been effectively removed and
they’re actually Rayleigh waves which are existing on the boundary between air and elastic earth.

5 Conclusion and Future Plan

From the theoretical derivation and numerical tests in this paper, we understand that it is possible
to apply the Green’s theorem wavefield separation algorithm on land. For on-shore application, the
reference medium consists of two half spaces: one acoustic and the other elastic. This will provide
a possible way to remove ground roll, which has the majority of the energy of the reference wave
for on-shore acquisition. In order to apply Green’s theorem to remove ground roll for practical
complicated land acquisition data, a modified reference model and further research are required.
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(a) (b) (c)

(d)

Figure 3: Numerical result for water/elastic model. (a): input total P wave; (b): predicted reference
wave P0 at depth 0m; (c): P-P0; (d): actual wavelet (red line) and wavelet estimated from P0 at
offset 400m (blue line). Figures in (a), (b) and (c) are in the same scales.
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(a) (b) (c)

(d)

Figure 4: Numerical result for water/elastic model. (a): input total S wave; (b): predicted reference
wave S0 at depth 0m; (c): S-S0; (d): actual wavelet (red line) and wavelet estimated from S0 at
offset 400m (blue line). Figures in (a), (b) and (c) are in the same scales.

Appendix
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(a) (b) (c)

(d) (e) (f)

Figure 5: Numerical result for air/elastic model. (a): input total P wave; (b): predicted
reference wave P0; (c): P-P0; (d): input total S wave; (e): predicted reference wave S0; (f):
S-S0. All the figures are in the same scales.

A 2D Elastic Wave Equation and Basis Transform

A.1 In Displacement Space

In displacement space, the basic wave equations (Matson (1997), Zhang (2006)) are
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Lu = f, (16)

L0u0 = f, (17)

LG = δ, (18)

L0G0 = δ, (19)

where L and L0 are the differential operators that describe the wave propagation in the actual
medium and the reference medium, respectively, u is the displacement and f is source term, and G
and G0 are the corresponding Green’s operators for the actual medium and the reference medium,
respectively.

In the actual medium, the 2D isotropic elastic wave equation is (Weglein and Stolt (1995))

Lu =

(
ρω2

(
1 0
0 1

)
+

(
∂xγ∂x + ∂zµ∂z ∂x(γ − 2µ)∂z + ∂zµ∂x

∂z(γ − 2µ)∂x + ∂xµ∂z ∂zγ∂z + ∂xµ∂x

))
= f, (20)

where

u =

(
ux
uz

)
=displacement,

ρ=density,

γ=bulk modulus (γ ≡ ρα2, where α is P-wave velocity),

µ=shear modulus (µ ≡ ρβ2, where β is S-wave velocity),

and

f =

(
fx
fz

)
=source term.

For an isotropic homogeneous medium, (ρ, γ, µ) = (ρ0, γ0, µ0), (α, β) = (α0, β0), and

L0 =

(
ρ0ω

2

(
1 0
0 1

)
+

(
γ0∂

2
x + µ0∂

2
z (γ0 − µ0)∂x∂z

(γ0 − µ0)∂x∂z µ0∂
2
x + γ0∂

2
z

))
. (21)

A.2 In PS space

For convenience, we can change the basis from u =

(
ux
uz

)
to Φ =

(
φP

φS

)
.

For homogeneous reference medium, L0 can be diagonalized in a new basis via transformation
(Weglein and Stolt (1995))

L̂0 ≡ ΠL0Π
−1Γ−10 =

(
52 + ω2

α2
0

52 + ω2

β2
0

)
=

(
L̂P0

L̂S0

)
, (22)
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where L̂0 corresponds to L0 transformed to PS space, Π =

(
∂x ∂z
−∂z ∂x

)
, and Γ0 =

(
γ0

µ0

)
.

Then we have

Φ0 =

(
φP

φS

)
= Γ0Πu0 (23)

and

F =

(
FP

FS

)
= Πf. (24)

The wave equation can then be written as

L̂0Φ0 =

(
L̂P0

L̂S0

)(
φP

φS

)
= F. (25)

Since G0 ≡ L−10 , Green’s Function in the PS space is

Ĝ0 ≡ Γ0ΠG0Π
−1 =

(
ĜP0

ĜS0

)
, (26)

and
L̂0Ĝ0 = δ. (27)

For an actual inhomogeneous medium, on the basis of scattering theory, Weglein et al. (2003) give,

G = G0 +G0V G, (28)

where V is the perturbation satisfying V = L0 − L.
Using the same form to transform the basis of G,

Ĝ = Γ0ΠGΠ−1 = Γ0Π(G0 +G0V G)Π−1 = Ĝ0 + Ĝ0V̂ Ĝ, (29)

where Green’s operator in the PS space is Ĝ =

(
ĜPP ĜPS

ĜSP ĜSS

)
andV̂ = ΠV Γ−10 Π−1 =

(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
.

The elastic wave equations in PS space are

L̂Φ = F, (30)

L̂Ĝ = δ. (31)
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B Green’s Function in PS Space with an Air/Elastic Reference
Medium

In the air/elastic reference medium (L̂′0), there are three possible sources. From Fig.6, we understand
that different wavefields will be generated by sources located in different media. For a P source
located in the air, PP reflected wave and PP and SP transmitted waves will be generated; for a
P source located in the elastic earth, PP transmitted wave and PP and SP reflected waves will be
generated; and for a S source located in the elastic earth, PS transmitted wave and PS and SS
reflected waves will be generated. The reflection/transmission coefficients should be calculated in
order to find the Green’s functions.

The boundary condition should be used to confirm the reflection and transmission coefficients. The
normal and shear stresses and vertical displacements should be continuous along the air/elastic
boundary. If we assume that the air is medium (1) and the earth is medium (2), we have

τ (1)zz = τ (2)zz ,

τ (1)zx = τ (2)zx = 0,

u(1)z = u(2)z , (32)

where τ (1)zz is the normal stress and τ (1)zx is the shear stress.

On the basis of the constitutive relations that

τzz = γ
∂uz
∂z

+ (γ − 2µ)
∂ux
∂x

,

τzx = µ(
∂uz
∂x

+
∂ux
∂z

),

and on the relation between potential and displacement that

Φ = ΓΠu,

we can obtain 



τ
(1)
zz = φP1 ,

τ
(2)
zz = 1

ρ2ω2 [(γ2 − 2µ2)k
2
α2
φP2 − 2µ2(

∂2φP2
∂z2

+
∂2φS2
∂x∂z )],

τ
(2)
zx = − 1

ρ2ω2 [2
∂2φP2
∂x∂z + (

∂2φS2
∂x2
− ∂2φS2

∂z2
)],

u
(1)
z = − 1

ρ1ω2

∂φP1
∂z ,

u
(2)
z = − 1

ρ2ω2 (
∂φP2
∂z +

∂φS2
∂x ).

(33)

Combining equation 32 and equation 33, the reflection and transmission coefficients can be con-
firmed.
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Figure 6: Three types of source located in different media and their corresponding waves. (a): a P
source located in the air; (b): a P source located in the earth; (c): a S source located in the earth.

From Fig.6, there should be three Green’s functions. Here we assume that the boundary is located
at depth 0 and the source and receiver locations are given by rs(xs, zs) and r(x, z), respectively.

For the first situation (Fig.6(a)), the incident P-wave (z < 0) can be represented by

(∇2 +
ω2

α2
1

)ĜP0 (x, z) = δ(x− xs)δ(z − zs), (34)

ĜP0 (x, z, ω) =
1

2π

∫
eiν1|z−zs|

2iν1
eikx(x−xs)dkx, (35)
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where the vertical wavenumber in the air is

ν1 =

{ √
k2α1
− k2x if kx < kα1

i
√
k2x − k2α1

if kx > kα1

kα1 =
ω

α1
.

The reflected and transmitted waves can be represented as




Ĝ
PP (1)
0 (x, z, ω) = 1

2π

∫
P̀ Ṕ e−iν1zse−iν1z

2iν1
eikx(x−xs)dkx,

Ĝ
PP (2)
0 (x, z, ω) = 1

2π

∫
P̀ P̀ e−iν1zseiν2z

2iν1
eikx(x−xs)dkx,

Ĝ
SP (2)
0 (x, z, ω) = 1

2π

∫
P̀ S̀ e

−iν1zseiη2z
2iν1

eikx(x−xs)dkx,

(36)

where the vertical wavenumbers in the elastic medium are

ν2 =

{ √
k2α2
− k2x if kx < kα2

i
√
k2x − k2α2

if kx > kα2

kα2 = ω
α2
,

η2 =





√
k2β2 − k2x if kx < kβ2

i
√
k2x − k2β2 if kx > kβ2

kβ2 = ω
β2
.

When z is close to 0 on both sides, by using the boundary condition, we can confirm the coefficients

are





P̀ Ṕ =
ν1D−ν2nk4β2

D1
,

P̀ P̀ =
−2ν1k2β2 (2k

2
x−k2β2 )

D1
,

P̀ S̀ =
4kxν1ν2k2β2

D1
,

where





n = ρ1/ρ2,
D = (2k2x − k2β2)2 + 4k2xν2η2,

D1 = ν1D + ν2nk
4
β2
.

For the second situation (Fig.6(b)), the incident P-wave (z > 0) can be represented by

(∇2 +
ω2

α2
2

)ĜP0 (x, z) = δ(x− xs)δ(z − zs), (37)

ĜP0 (x, z, ω) =
1

2π

∫
eiν2|z−zs|

2iν2
eikx(x−xs)dkx. (38)

The reflected and transmitted waves can be represented as




Ĝ
PP (1)
0 (x, z, ω) = 1

2π

∫
Ṕ Ṕ eiν2zse−iν1z

2iν2
eikx(x−xs)dkx,

Ĝ
PP (2)
0 (x, z, ω) = 1

2π

∫
Ṕ P̀ eiν2zseiν2z

2iν2
eikx(x−xs)dkx,

Ĝ
SP (2)
0 (x, z, ω) = 1

2π

∫
Ṕ S̀ e

iν2zseiη2z

2iν2
eikx(x−xs)dkx,

(39)
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where





Ṕ Ṕ =
−2nν2k2β2 (2k

2
x−k2β2 )

D1
,

Ṕ P̀ =
−ν1((2k2x−k2β2 )

2−4k2xν2η2)+ν2nk4β2
D1

,

Ṕ S̀ =
4kxν1ν2(2k2x−k2β2 )

D1
.

For the third situation (Fig.6(c)), the incident S-wave (z > 0) can be represented by

(∇2 +
ω2

β22
)ĜS0 (x, z) = δ(x− xs)δ(z − zs), (40)

ĜS0 (x, z, ω) =
1

2π

∫
eiη2|z−zs|

2iη2
eikx(x−xs)dkx. (41)

The reflected and transmitted waves can be represented as




Ĝ
PS(1)
0 (x, z, ω) = 1

2π

∫
ŚṔ eiη2zse−iν1z

2iη2
eikx(x−xs)dkx,

Ĝ
PS(2)
0 (x, z, ω) = 1

2π

∫
ŚP̀ eiη2zseiν2z

2iη2
eikx(x−xs)dkx,

Ĝ
SS(2)
0 (x, z, ω) = 1

2π

∫
ŚS̀ e

iη2zseiη2z

2iη2
eikx(x−xs)dkx,

(42)

where





ŚṔ =
−4nk2β2kxν2η2

D1
,

ŚP̀ =
4kxν1η2(2k2x−k2β2 )

D1
,

ŚS̀ =
−ν1((2k2x−k2β2 )

2−4k2xν2η2)−ν2nk4β2
D1

.

If both the source and the receiver are located below the boundary, for equation

L̂
′
0Ĝ0 = δ, (43)

Ĝ0(x, z, xs, zs, ω)

=

(
ĜP0

ĜS0

)
+

(
ĜPP0 ĜPS0

ĜSP0 ĜSS0

)

=
1

2π

∫
eikx(x−xs)

((
eiν2|z−zs|

2iν2
0

0 eiη2|z−zs|
2iη2

)
+

(
Ṕ P̀ eiν2zseiν2z

2iν2
ŚP̀ eiη2zseiν2z

2iη2

Ṕ S̀ e
iν2zseiη2z

2iν2
ŚS̀ e

iη2zseiη2z

2iη2

))
dkx.

(44)

C Derivation of Green’s Theorem Reference Wavefield Prediction
in PS Space

Let us define L̂0, L̂
′
0, L̂ as the differential operators, in turn describing the whole-space homogeneous

elastic medium, the air/elastic reference medium and the actual medium; and let V̂air, V̂earth repre-
sent the perturbations of air and earth relative to the whole-space homogeneous elastic condition,
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respectively. Then we have




L̂
′
0 = L̂0 − V̂air,

L̂Φ = (L̂0 − V̂air − V̂earth)Φ = F,

L̂
′
0Ĝ0 = δ.

(45)

If it is written explicitly, we have
(
∇′2 + ω2

α2
2

∇′2 + ω2

β2
2

)(
φP (r′ , rs)
φS(r′ , rs)

)
=

(
A(ω)δ(r′ − rs)

0

)
+ (V̂air + V̂earth)

(
φP (r′ , rs)
φS(r′ , rs)

)
,

(46)

(
∇′2 + ω2

α2
2

∇′2 + ω2

β2
2

)(
ĜP0 (r′ , r) + ĜPP0 (r′ , r) ĜPS0 (r′ , r)

ĜSP0 (r′ , r) ĜS0 (r′ , r) + ĜSS0 (r′ , r)

)

=

(
δ(r′ − r)

δ(r′ − r)

)
+ V̂air

(
ĜP0 (r′ , r) + ĜPP0 (r′ , r) ĜPS0 (r′ , r)

ĜSP0 (r′ , r) ĜS0 (r′ , r) + ĜSS0 (r′ , r)

)
.

(47)

If we choose the volume as is shown in Fig.2, by using Green’s Second Identity, we have

∫

V

(
Φ(r

′
, rs) · ∇

′2Ĝ0(r
′
, r)−∇′2Φ(r

′
, rs) · Ĝ0(r

′
, r)
)
dV

=

∫

V




Φ(r′ , rs) ·
(
δ(r′ − r)

δ(r′ − r)

)
+
(((

((((
(((

(((

Φ(r′ , rs) · V̂air(r′)Ĝ0(r
′
, r)

+

��
���

���
���

���
��

Φ(r′ , rs) ·
(

ω2

α2
2

ω2

β2
2

)
Ĝ0(r

′
, r)

−



((((

(((
((((

((((
(
A(ω)δ(r′ − rs)

0

)
· Ĝ0(r

′
, r) +

((((
((((

((((
(

V̂air(r
′
)Φ(r′ , rs) · Ĝ0(r

′
, r)

+V̂earth(r′)Φ(r′ , rs) · Ĝ0(r
′
, r) +

��
���

���
���

���
��(

ω2

α2
2

ω2

β2
2

)
Φ(r′ , rs) · Ĝ0(r

′
, r)







dV

=Φ(r, rs)−
∫

V
V̂earth(r

′
)Φ(r

′
, rs) · Ĝ0(r

′
, r)dV

=Φ(r, rs)− ΦS(r, rs)

=

∮ (
Φ(r

′
, rs) · ∇

′
Ĝ0(r

′
, r)−∇′Φ(r

′
, rs) · Ĝ0(r

′
, r)
)
· n̂dS′,

(48)

where ΦS(r, rs) represents the scattering wavefield caused by the earth perturbation.
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Finally, we can obtain the reference wavefield as

Φ0(r, rs) =

∮ (
Φ(r

′
, rs) · ∇

′
Ĝ0(r

′
, r)−∇′Φ(r

′
, rs) · Ĝ0(r

′
, r)
)
· n̂dS′

or, if the measurement surface is horizontal,

=−
∫ (

Φ(r
′
, rs) ·

(
∂z′

∂z′

)
Ĝ0(r

′
, r)−

(
∂z′

∂z′

)
Φ(r

′
, rs) · Ĝ0(r

′
, r)

)
dx′.

(49)

The reference wavefield in the (r, ω) domain can be obtained as
(
φP0 (r, rs)
φS0 (r, rs)

)

=−
∫



(
∂z′

∂z′

)(
ĜP0 (r′ , r) + ĜPP0 (r′ , r) ĜSP0 (r′ , r)

ĜPS0 (r′ , r) ĜS0 (r′ , r) + ĜSS0 (r′ , r)

)(
φP (r, rs)
φS(r, rs)

)

−
(
ĜP0 (r′ , r) + ĜPP0 (r′ , r) ĜSP0 (r′ , r)

ĜPS0 (r′ , r) ĜS0 (r′ , r) + ĜSS0 (r′ , r)

)(
∂z′

∂z′

)(
φP (r, rs)
φS(r, rs)

)


 dx′

and using the reciprocity of the Green’s function

=−
∫



(
∂z′

∂z′

)(
ĜP0 (r, r′) + ĜPP0 (r, r′) ĜPS0 (r, r′)

ĜSP0 (r′ , r) ĜS0 (r, r′) + ĜSS0 (r, r′)

)(
φP (r, rs)
φS(r, rs)

)

−
(
ĜP0 (r, r′) + ĜPP0 (r, r′) ĜPS0 (r, r′)

ĜSP0 (r, r′) ĜS0 (r, r′) + ĜSS0 (r, r′)

)(
∂z′

∂z′

)(
φP (r, rs)
φS(r, rs)

)


 dx′.

(50)

Fourier transforming over x, we can obtain the algorithm for predicting the reference wavefield in
the (kx, ω) domain:

(
φ̃P0 (kx, z, rs)
φ̃S0 (kx, z, rs)

)

=−
((

∂z′

∂z′

)( ˜̂
GP0 (kx, z, r

′
) +

˜̂
GPP0 (kx, z, r

′
)

˜̂
GPS0 (kx, z, r

′
)

˜̂
GSP0 (kx, z, r

′
)

˜̂
GSS0 (kx, z, r

′
) +

˜̂
GSS0 (kx, z, r

′
)

))(
φ̃P (kx, z, rs)
φ̃S(kx, z, rs)

)

+

(
˜̂
GP0 (kx, z, r

′
) +

˜̂
GPP0 (kx, z, r

′
)

˜̂
GPS0 (kx, z, r

′
)

˜̂
GSP0 (kx, z, r

′
)

˜̂
GSS0 (kx, z, r

′
) +

˜̂
GSS0 (kx, z, r

′
)

)((
∂z′

∂z′

)(
φ̃P (kx, z, rs)
φ̃S(kx, z, rs)

))
.

(51)
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Abstract

The ISS internal multiple attenuation algorithm is modified and improved in order to enhance
the fidelity of the amplitude and phase predictions of the internal multiple, by incorporating
the source wavelet and radiation pattern. The modified ISS internal multiple attenuation al-
gorithm is fully data-driven to predict all first-order internal multiples for all horizons at once,
without requiring any subsurface information. In synthetic data tests, for data generated by
a point source with a wavelet, the amplitudes and shapes of the predicted internal multiples
are significantly improved by incorporating the deconvolution of the source wavelet into the ISS
internal multiple attenuation algorithm. For data generated by a general source with a radiation
pattern, the prediction is further improved by incorporating the source wavelet and radiation
pattern. Therefore, the modified ISS internal multiple attenuation algorithm produces more
accurate results when the data are generated by a frequency and angle dependent source.

1 Introduction

In seismic exploration, seismic reflection events are classified as primary or multiple, depending
on whether the energy arriving at the receiver has experienced one or more upward reflections,
respectively. Depending on the location of the downward reflections, multiples are divided into free-
surface multiples and internal multiples. Free-surface multiples are multiples that have experienced
at least one downward reflection at the free surface (a free surface is either an air-water surface
or an air-land surface). Multiples that have experienced all their downward reflections below the
free surface are called internal multiples. Methods for seismic imaging and parameter estimation
(inversion) assume that the data contain only primaries. Multiples are considered to be noise
because they can interfere with primaries and/or be misinterpreted as primaries. Hence, multiple
removal is a prerequisite to seismic imaging and inversion.

In this report, we will focus on internal multiple attenuation and will analyze and test the impact
of incorporating the source wavelet and radiation pattern on internal multiple prediction. The ISS
internal multiple attenuation algorithm was first proposed by Araújo et al. (1994) and Weglein et al.
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(1997). It is a fully data-driven and model-type independent algorithm (Weglein et al., 2003), and
it predicts the correct traveltimes and approximate amplitudes of all the internal multiples at all
depths at once. Matson (1997) extended the theory for land and OBC applications (Matson and
Weglein, 1996) and presented the first towed-streamer field-data example using the 2D version of
the algorithm (Matson et al., 1999). Ramírez and Weglein (2005) discussed how to extend the ISS
internal multiple attenuation algorithm from attenuator toward eliminator of multiples. Herrera and
Weglein (2013) developed the 1-D ISS internal multiple elimination algorithm for internal multiple
generated by a single shallowest reflector and Zou and Weglein (2013) further derived a general
form of the ISS internal multiple elimination algorithm. Other implementations and improvements
have also been achieved by Hsu et al. (2011), Terenghi et al. (2011), Weglein et al. (2011), and Luo
et al. (2011). Ma et al. (2012) and Liang et al. (2012) discussed how to remove spurious events.

The ISS internal multiple attenuation algorithm has certain data requirements: (1) removal of the
reference wavefield, (2) an estimation of the source wavelet and radiation pattern, (3) source and
receiver deghosting, and (4) removal of the free-surface multiples. The first three requirements can
be obtained by Green’s theorem methods (Zhang andWeglein, 2005; Mayhan et al., 2012; Tang et al.,
2013) and the free-surface multiples can be removed by the ISS free-surface multiple elimination
algorithm (Carvalho, 1992; Weglein et al., 2003; Yang et al., 2013). Green’s theorem methods and
the ISS free-surface multiple elimination algorithm are consistent with the ISS internal multiple
attenuation algorithm, since all are multidimensional wave-theoretic preprocessing methods and do
not require subsurface information.

The ISS internal multiple attenuation algorithm (Araújo, 1994; Weglein et al., 1997) assumes that
the input data are spike wave. In other words, the input data have been deconvolved by a source
wavelet. If the input data are generated by a source wavelet instead of by a spike wave, the
predicted internal multiple has convolved at least three source wavelets. Hence, the source wavelet
has a significant effect on the amplitude and shape of the predicted internal multiple. In this report,
to improve the amplitude and the shape of a predicted internal multiple, the ISS internal multiple
attenuation algorithm is extended to accommodate a source wavelet.

In addition, the ISS internal multiple attenuation algorithm assumes an isotropic point source,
i.e., it assumes that the source has no variation of amplitude or phase with take-off angle. A
large marine air-gun array will exhibit directivity and produce variations of the source signature
(Loveridge et al., 1984). In on-shore exploration, even if there is no source array, the source can
have radiation pattern or directivity. That directivity has significant effects on multiple removal
or attenuation and AVO analysis. In seismic data processing, it is important that we characterize
the source array’s effect on any seismic processing methods. Therefore, to further improve the
effectiveness of the ISS internal multiple attenuation algorithm, it is extended to accommodate a
source wavelet and radiation pattern. The synthetic data tests show that accommodating the source
wavelet and radiation pattern can enhance the fidelity of the amplitude and phase predictions of
internal multiples.

The report is arranged as follows: First, the ISS internal multiple attenuation algorithm is briefly
reviewed and analyzed. Second, the ISS internal multiple attenuation algorithm is modified and
extended by incorporating the source wavelet and radiation pattern. Third, the synthetic data
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Figure 1: Subevents of an internal multiple. The internal multiple (black) is constructed by three
arrivals (blue, green and red) that satisfy a lower-higher-lower relationship in pseudodepths, zi.

generated by a point source and by a general source with a radiation pattern are tested by this
modified algorithm. Finally, we offer a discussion and conclusions.

2 The ISS internal multiple attenuation algorithm

The ISS internal multiple attenuation algorithm assumes that the input data D(kg, ks, ω) have
been deghosted and the reference wavefield and free-surface multiples have been removed. The
terms ω, ks and kg are temporal frequency, and the horizontal wavenumbers for source and receiver
coordinates, respectively. The algorithm (Araújo, 1994; Weglein et al., 1997; 2003) for first-order
internal multiple prediction in a 2D earth is given by

b3(kg, ks, ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk1e

−iq1(zg−zs)dk2eiq2(zg−zs)

×
∫ ∞

−∞
dz1b1(kg, k1, z1)e

i(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1, k2, z2)e

−i(q1+q2)z2

×
∫ ∞

z2+ε
dz3b1(k2, ks, z3)e

i(q2+qs)z3 , (1)

where qs and qg are the vertical source and vertical receiver wavenumbers, respectively. The
wavenumbers are given by the dispersion relation qi = sgn(ω)

√
ω2

c20
− k2i for i = (g, s); c0 is the

reference velocity. The terms zs and zg are the source and receiver depths, respectively; and zi
(i = 1, 2, 3) represents pseudodepth. The parameter ε is introduced to insure that the relations
z1 > z2 and z3 > z2 are satisfied. The input b1 represents effective plane-wave incident data and
will be discussed and analyzed in detail in the next section.

Figure 1 illustrates how the algorithm constructs a first-order internal multiple. The first-order
internal multiple is created by using convolutions and crosscorrelations to combine three events.
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The traveltime of the internal multiple is predicted by adding the traveltimes of the two deeper
events and subtracting the traveltime of the shallower one. Since not all combinations of subevents
will generate an internal multiple, the depth integrals in equation 1 are constrained to impose a
lower-higher-lower relationship among the three subevents, as represented in Figure 1. Therefore,
the third subevent in Figure 1 has a pseudodepth z2 above the other two events, such that z2 < z3
and z2 < z1. To impose the strict lower-higher-lower relationship, a parameter ε is introduced to
preclude z1 = z2 and z2 = z3 in the integrals. For band-limited data, ε relates to the width of the
wavelet.

3 Incorporating the source wavelet and radiation pattern into the
ISS internal multiple attenuation algorithm

In the previous section, the input b1 of the ISS internal multiple attenuation algorithm represents
effective plane-wave incident data, which can be defined from the first-order equation of the inverse
scattering series (Weglein et al., 2003),

D(xg, εg, xs, εs, ω) =

∫
dx1

∫
dz1

∫
dx2

∫
dz2

Gd0(xg, εg, x1, z1, ω)V1(x1, z1, x2, z2, ω)P d0 (x2, z2, xs, εs, ω), (2)

where the data D have been deghosted and the reference wavefield and free-surface multiples have
been removed (Mayhan et al., 2012; Yang et al., 2013). Gd0 and P d0 are the direct reference Green’s
function and the direct reference wavefield, respectively.

The direct reference wavefield is govern by wave equation in the reference medium,

(∇2 + ω2/c20)P
d
0 =





δ, unit,
Aδ, point,
ρ, general,

(3)

where c0 is the reference velocity. The terms δ, Aδ, and ρ are unit source, point source, and general
source, respectively.

For a unit source, P d0 = Gd0. We take a Fourier transform over xs and xg on both sides of equation
2 and define b1 as

b1(kg, ks, qg + qs) =
V1(kg, qg, ks, qs, ω)

−2iqg
= −2iqsD(kg, ks, ω), (4)

where D(kg, ks, ω) is the Fourier-transformed prestack data. The effective plane-wave incident data
b1 are introduced into equation 1 after an uncollapsed Stolt migration (Weglein et al., 1997) that
takes b1(kg, ks, qg + qs) into the pseudodepth domain, b1(kg, ks, zi), by using the reference velocity,
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c0. Then, the first-order internal multiples D3(kg, ks, ω), which are predicted by the ISS internal
multiple attenuation algorithm (equation 1), are obtained by

D3(kg, ks, ω) = (−2iqs)
−1b3(kg, ks, qg + qs). (5)

For an isotropic point source, P d0 = A(ω)Gd0. Fourier transforming over xg and xs on both sides of
equation 2 gives

b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω)/A(ω), (6)

where A(ω) is the source signature for a point source. After b3 has been predicted by equation 1,
the first-order internal multiple is achieved by convolving the source wavelet A(ω) back

D3(kg, ks, ω) = (−2iqs)
−1A(ω)b3(kg, ks, qg + qs). (7)

For a general source with a radiation pattern (e.g., a source array), the direct reference wavefield
P d0 for a 2D case can be expressed as an integral of the direct reference Green’s function Gd0 over
all air-guns in an array,

P d0 (x, z, xs, zs, ω) =

∫
dx′dz′ρ(x′, z′, ω)Gd0(x, z, x′ + xs, z

′ + zs, ω), (8)

where (x, z) and (xs, zs) are the prediction point and source point, respectively. (x′, z′) is the
distribution of the source with respect to the source locator (xs, zs). Using the bilinear form of
Green’s function and Fourier transforming over x, we obtain the relationship between ρ and P d0 as

P d0 (k, z, xs, zs, ω) = ρ(k, q, ω)
eiq|z−zs|

2iq
eikx. (9)

On the other hand, the direct reference wavefield P d0 is obtained by deghosting the reference wavefield
P0 that is separated from the total measured data by using Green’s theorem method (Weglein and
Secrest, 1990).

Since k2 +q2 = ω2/c20, q is not a free variable, hence, we can not obtain ρ(x, z, ω) in space-frequency
domain by taking an inverse Fourier transform on ρ(k, q, ω). However, the projection of the source
signature ρ(k, q, ω) can be achieved directly from the direct reference wavefield P d0 in the f -k domain,
where the variable k or q represent the amplitude variations of the source signature with angles.

Substituting the projection of the source signature ρ into equation 2 and Fourier transforming over
xs and xg gives

b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω)/ρ(kg, qg, ω). (10)

Further details of obtaining ρ can be found in Yang et al. (2013) and Yang and Weglein (2013).
The first-order internal multiple is calculated from b3,

D3(kg, ks, ω) = (−2iqs)
−1ρ(kg, qg, ω)b3(kg, ks, qg + qs), (11)

where b3 is predicted by equation 1.
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All above derivations are 2D cases, and they can be directly extended to 3D. From the derivations,
we can see that the kernel of the ISS internal multiple attenuation algorithm (equation 1) is not
change and the source wavelet and radiation pattern are imported by equations 6 and 10. The
predicted internal multiples D3 are also affected by the source wavelet and radiation pattern in
equations 7 and 11. When adding the predicted internal multiple D3 to the input data D, all
the first-order internal multiples are attenuated, and higher-order internal multiples are altered. If
the source wavelet is not incorporated into the ISS internal multiple attenuation algorithm, the
amplitudes and shapes of the predicted internal multiples are not comparable with those of the
internal multiples in the input data. To improve the prediction of amplitude and shape, the internal
multiple attenuation algorithm should be modified for its input and output by accommodating the
source wavelet and radiation pattern. This accommodation can enhance the fidelity of predictions
of the amplitude and shape of internal multiples. In Liang and Weglein (2013), the author also
discussed the effects of the source wavelet on the higher-order terms and on the spurious events in
the internal multiple prediction.

4 Numerical tests on the synthetic data

In this section, I will present the numerical tests of the internal multiple attenuation for the data
generated by a point source and a general source with a radiation pattern. The numerical tests
are based on a simple 1D acoustic model with varying velocity and constant density, as shown in
Figure 2a. The synthetic data are generated by the finite-difference method shown in Figure 3a.
The synthetic data have one shot gather with 2001 traces, and each trace has 301 time samples,
with dt = 5ms. The trace interval is 5m. Figure 2b shows the source wavelet that we applied in
the finite-difference modeling code.

4.1 The source wavelet effect on internal multiple prediction

For the data generated by a point source, the internal multiple will be predicted by using the ISS
internal multiple attenuation algorithm with and without source wavelet deconvolution. Figure 3
shows the input data and their corresponding predicted internal multiples. They are plotted using
the same scale. In the input data, the first two strongest events are the primaries, and the other
events are internal multiples. Figures 3b and 3c show the predicted internal multiples using the
ISS internal multiple attenuation algorithm with and without source wavelet deconvolution. From
Figures 3b and 3c, we can see that both algorithms predict the correct traveltimes, but they predict
different amplitudes and shapes for the internal multiples. In Figure 3b, the amplitude of the
predicted internal multiple is comparable with the internal multiple in the input data, while the
amplitude is totally different from that of the internal multiple in the input data in Figure 3c.

To see the details of the predicted internal multiples, we pick the middle trace (offset = 0) and the
far trace (offset = 1700m) from each image in Figure 3. To compare the internal multiples from the
input data with the predicted results, the time windows are chosen at 0.85s ∼ 1.10s for the middle
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Figure 2: (a) The earth model that we used to generate the synthetic data. It is a one-dimensional
acoustic constant-density medium. (b) A Ricker wavelet.
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Figure 3: (a) The input data; (b) and (c) The internal multiples predicted by the ISS internal
multiple attenuation algorithm with and without source wavelet deconvolution.
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Figure 4: (a), (b), (c) The middle traces, and (d), (e), (f) the far traces, picked from the input data
and the internal multiples predicted by the ISS internal multiple attenuation algorithm with and
without source wavelet deconvolution.

trace and at 1.05s ∼ 1.25s for the far trace, as shown in Figure 4. For the middle trace, comparing
Figure 4c with Figure 4a, we can see that the shape of the internal multiple predicted by the ISS
internal multiple attenuation algorithm without source wavelet deconvolution is totally different
from that of the true internal multiple. The predicted and true amplitudes are not comparable,
either. The predicted amplitudes and shapes are so different from the true ones in this case because
the predicted internal multiples convolve three wavelets (Equation 1). However, comparing Figure
4b with Figure 4a, we can see that the amplitude and shape of the internal multiple predicted by
the ISS internal multiple attenuation algorithm with source wavelet deconvolution are similar to
those for the true internal multiple. Their comparison is plotted in Figure 5a. It demonstrates
that by accommodating the source wavelet deconvolution, the amplitude and shape of the predicted
internal multiple are significantly improved. For the far-offset traces, we obtain the similar results,
as are shown in Figures 4e and 5b.
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Figure 5: The comparison between the internal multiple (red) in the input data and the internal
multiple (blue) predicted by the ISS internal multiple attenuation algorithm with source wavelet
deconvolution at (a) zero offset and at (b) far offset (1700m).
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Figure 6: (a) The earth model with a source array.

From the numerical test, we conclude that by incorporating the source wavelet deconvolution, the
ISS internal multiple attenuation algorithm produces more accurate and encouraging results. The
predicted internal multiple has the correct traveltime, and the amplitude and shape are significantly
improved.

4.2 The radiation pattern effect on internal multiple prediction

For the data generated by a general source with a radiation pattern (e.g., source array), we will
predict the internal multiple using the ISS internal multiple attenuation algorithm with and without
incorporating the source wavelet and radiation pattern. The synthetic data are generated by a
source array with five point sources, using the finite-difference method in the same model, as shown
in Figure 6.

Figure 7a shows the input data generated by the source array. Similar with the data generated by
the point source, the first two strongest events are the primaries, and the other events are internal
multiples. Figures 7b and 7c show the internal multiples predicted by using the ISS internal multiple
attenuation algorithm with and without incorporating the source wavelet and radiation pattern.
From Figures 7b and 7c, we can see that both algorithms can predict the correct traveltime and an
acceptable amplitude of the internal multiple.

To compare the predictions of internal multiples in detail, the middle trace (offset = 0) and the
far trace (offset = 1700m) are picked from each figure in Figure 7. We choose the time windows
at 0.85s ∼ 1.10s for the middle trace and at 1.05s ∼ 1.25s for the far trace, as shown in Figure 8.
Comparing the middle and far traces, we can see that the amplitude and shape of the internal mul-
tiple predicted by the ISS internal multiple attenuation algorithm with and without incorporating
the radiation pattern are very similar to those for the internal multiple in the input data. Their
comparisons are plotted in Figure 9. At zero offset, there are no visible differences, as is shown in
Figure 9a, while at far offset, Figure 9b demonstrates that the amplitude of the internal multiple

72



Multiples: part I M-OSRP13-14

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e(
s)

500 1000 1500 2000
Trace Number

(a)

0.4

0.6

0.8

1.0

1.2

1.4
T

im
e(

s)

500 1000 1500 2000
Trace Number

(b)

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e(
s)

500 1000 1500 2000
Trace Number

(c)

Figure 7: (a) The input data; (b) and (c) the internal multiples predicted by the ISS internal
multiple attenuation algorithm with and without incorporating the source wavelet and radiation
pattern.

prediction is further improved by accommodating the source array. Therefore, for the general source
data, the modified ISS internal multiple attenuation algorithm that incorporates the source wavelet
and radiation pattern can enhance the accuracy of the amplitude prediction of the internal multiple.

5 Conclusions

The ISS internal multiple attenuation algorithm is modified and extended by accommodating the
source wavelet and radiation pattern, which can be provided by the prerequisite. The modified ISS
internal multiple attenuation algorithm enhances the fidelity of amplitude and phase predictions of
the internal multiple. It can provide added value compared to previous methods for the effectiveness
of the internal multiple prediction. The modified ISS internal multiple attenuation algorithm retains
all the merits of the original algorithm that is fully data-driven and does not require subsurface
information. In synthetic data tests, for the data generated by a point source with a wavelet,
the predictions of the amplitudes and shapes of internal multiples are significantly improved by
incorporating the source wavelet deconvolution into the ISS internal multiple attenuation algorithm.
For the data generated by a general source with a radiation pattern, the prediction is further
improved by incorporating the source wavelet and radiation pattern. We expect this extended ISS
internal multiple attenuation algorithm to be relevant and useful for on-shore application, as well.
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Figure 8: (a), (b), (c) The middle traces, and (d), (e), (f) the far traces, picked from the input data
and the internal multiples predicted by the ISS internal multiple attenuation algorithm with and
without incorporating the source wavelet and radiation pattern.
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Figure 9: The comparison between the true internal multiple (red) in the input data and the internal
multiple predicted by the ISS internal multiple attenuation algorithm with (green dash) and without
(blue) incorporating the source wavelet and radiation pattern at (a) zero offset and at (b) far offset
(1700m).
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Abstract

The attenuation of internal-multiple energy on land data is currently one of the most challeng-
ing tasks in seismic data preprocessing. In general, poor data quality and the lack of velocity
information for complicated geological structure (especially in the near surface) in land data of-
ten result in poor predictions by the internal multiple attenuation methods requiring subsurface
information. Inverse Scattering Series (ISS) internal-multiple attenuation is a very promising
algorithm for attenuating internal-multiple energy on land seismic exploration data. The key
characteristic of the ISS-based methods is that they do not require any information about the
subsurface– i.e., they are fully data driven. Internal multiples from all possible generators are
predicted simultaneously from the input data. In this paper we apply Inverse Scattering Series
(ISS) internal- multiple-attenuation algorithms on land seismic data from Canada.

1 Introduction

Inverse Scattering Series (ISS) internal multiple-attenuation is a data-driven internal-multiple-
attenuation algorithm (Araújo et al., 1994; Weglein et al., 1997). The lack of any need for infor-
mation about the medium through which the seismic wave propagates or the reflectors from which
the internal multiples generate makes the algorithm feasible in areas with complicated geological
structure. The algorithm predicts internal multiples for all horizons at once, with no intervention
required in the whole procedure. Weglein et al. (2003) provided a review of applications of the
inverse scattering series in seismic exploration.

This ISS internal-multiple-attenuation algorithm is the first term in a subseries of the ISS that
predicts the exact time and amplitude of all internal multiples without subsurface information. The
ISS attenuation algorithm predicts the correct traveltimes and approximate amplitudes of all the
internal multiples in the data, including converted-wave internal multiples (Coates and Weglein,
1996). Carvalho et al. (1992) pioneered the free-surface ISS method and applied it to field

data. Matson et al. (1999) were the first to apply the ISS internal-multiple algorithm to marine
towed-streamer field data. Matson (1997) and Weglein et al. (1997) extended the ISS methods for
removing free-surface and internal multiples from ocean-bottom and land data. Fu et al. (2010)
presented the first example of using land field data with the ISS internal-multiple attenuation
algorithm. Terenghi (2011) showed a result of pre-stack field data internal-multiple attenuation on
Encana on-shore data.
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Figure 1: The sub-events of an internal-multiple event. The internal multiple (rightmost one) is
constructed by three sub-events (the left three) that satisfy the lower-higher-lower relationship in
pseudodepth zi (i = 1, 2, 3).

2 Theory

The ISS internal-multiple-attenuation algorithm in 2D starts with the input data, D(kg, ks, ω),
which are deghosted and have had all free-surface multiples eliminated. The parameters, kg, ks,
and ω represent the Fourier conjugates to receiver, source and time, respectively. The ISS internal-
multiple-attenuation algorithm for first-order internal-multiple prediction in a 2D earth is given by
Araújo et al. (1994); Weglein et al. (1997):

b2D3 (kg, ks, qg + qs) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
dk1e

−iq1(zg−zs)

dk2e
−iq2(zg−zs)

×
∫ +∞

−∞
dz1e

i(qg+q1)z1b1(kg, k1, z1)

×
∫ z1−ε

−∞
dz2e

i(−q1−q2)z2b1(k1, k2, z2)

×
∫ +∞

z2+ε
dz3e

i(q2+qs)z3b1(k2, ks, z3). (1)

The quantity b1(kg, ks, z) corresponds to an un-collapsed migration (Weglein et al., 1997) of an
effective incident-plane-wave data that is given by −2iqsD(kg, ks, ω). The vertical wavenumbers for
receiver qg and source qs are given by qi = sqn(ω)

√
ω2

c20
− k2i for i = (q, s); c0 is the constant reference

velocity; zs and zg are source and receiver depths, respectively; and zi (i = 1, 2, 3) represents
pseudodepth.
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Figure 2: Acquisition-geometry map of the first CMP gather of the data set. Red dots represent
the source locations, and blue dots represent the receiver locations.

The construction of a first-order internal multiple is illustrated in Figure 1. The first-order internal
multiple is composed of three sub-events that satisfy z1 > z2 and z3 > z2. The traveltime of the
internal multiple is the sum of the traveltimes of the two deeper sub-events, minus the traveltime of
the shallower one. The parameter ε is introduced in equation 1 to preclude z1 = z2 and z2 = z3 in
the integrals. For band-limited data, ε is related to the width of the wavelet. The output of equation
1, b3, is divided by the obliquity factor and transformed back to the space-time domain. When we
subtract the predicted internal multiples from the original input data (by adaptive subtraction), all
first-order internal multiples are attenuated and higher-order internal multiples are altered.

3 Data and method chosen to accommodate the data

The Encana data are from the Western Canadian Sedimentary Basin, and are situated over a
restricted Devonian shelf basin. This shallow basin was initially connected to open marine waters.
Pinnacle reefs grew in this marine environment and later filled with oil, making them a prime
exploration target. The connection to the open marine water later became restricted, causing the
basin to fill with evaporates that today consist primarily of anhydrite. The anhydrite acts as a
lateral seal and cap rock for the porous reef reservoirs.

The reefs should be very easy to find in the seismic data. The basinal anhydrite produces a very
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Figure 3: Acquisition-geometry map of the whole Encana data set. Red dots represent the source
locations, and blue dots represent the receiver locations
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strong peak reflection, but the response is almost reversed when there is a reef present because the
reef porosity has a much lower acoustic impedance than the anhydrite porosity does. This is the
case with the western part of the basin, where all the reefs have all been found. On the eastern
side of the basin, the situation is quite different. There, a Lower Cretaceous coal, which reaches 15
meters in thickness, produces severe multiple interferences that obscure the entire Paleozoic section.
Many reefs have been found there, but many more dry holes than successes have been drilled there
because of this interference. Most commercial multiple-attenuation algorithms fail to remove this
interference. Our goal here is to make the reefs as clearly visible in the seismic data from the eastern
side of the basin as they are in the western side.

As was mentioned in the previous section, Fu et al. (2010) tested the ISS internal-multiple at-
tenuation algorithm on Arabian Peninsula land field data. Although the Arabian Peninsula land
field data in Fu et al. (2010) are off better quality, that region also has much more complicated
geological features. Thus, it is hard to pick a single clear target there with which to judge the
internal-multiple-attenuation result. The Encana data are inferior in data quality (with lower S/N
ratio) and have poorer acquisition geometry (limited fold and offset range) compared with the Ara-
bian Peninsula data, but there is a very simple target in the Encana data: the disappeared target
layer (the reef). The Encana data contain four different azimuths, but that does not provide much
help for the internal-multiple-attenuation task. Terenghi (2011) tested the same method on another
Canadian field data set, but those data have large offset coverage.

The Encana data we use here are from a multi-azimuth 2D survey line. Figure 3 shows the acquisition
geometry of the data. The geometry of the first CMP gather of these data is shown in Figure 2.
All CMP stations of the data compose a straight line on the map, so this is a 2D survey line even
though there are multiple azimuths in the data. The data area relatively old (from the mid 1990s), so
they have a very low fold for each CMP gather (32 traces). The 2D ISS internal-multiple-prediction
algorithm requires a full-coverage input (each shot gather has all receivers on the exact same stations,
and we have a shot gather for each station– e.g., there is a trace between every station pair.). If
we want to perform the 2D ISS internal- multiple-prediction, we would need to carry out a large
amount of extrapolation to obtain full 2D data coverage from the low-fold data that we have. That
would not only be expensive for computation, it also would be unreliable to "make" such a large
amount of data by extrapolation. Given the fact that the subsurface structures of the whole survey
line is fairly flat, the 1.5D pre-stack method would be a suitable choice for the internal-multiple-
attenuation task on these data. In equation 1 we show the 2D ISS internal-multiple-attenuation
algorithm. The 1.5D ISS internal-multiple-attenuation algorithm is a straightforward extension the
of 2D algorithm, and can be described as

b1.5D3 (kx;ω) =
1

(2π)4
e−iq(zg−zs)eiq(zg−zs)

×
∫ +∞

−∞
dz1b1(kx, z1)e

2iqz1

×
∫ z1−ε

−∞
dz2b1(kx, z2)e

−2iqz2
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×
∫ +∞

z2+ε
dz3b1(kx, z3)e

2iqz3 . (2)

The notation in equation 2 is the same as that in equation 1. If we compare the 1.5D version in
equation 2 with the 2D version in equation 1, the only difference is that in the 1.5D formula the
output has only one horizontal spatial wavenumber index kx rather than two (kg and ks). This is
obvious since under the 1.5D assumption (flat-layer medium assumption), all horizontal incident
wavenumbers should be equal to the reflected wavenumber (kg = k1 = k2 = ks = kx). Hence, there
is only one horizontal spatial wavenumber kx in equation 2.

4 Results

Figures 4 and 5 show the input data in the pre-stack and post-stack domains, respectively. As the
ISS internal multiple attenuation algorithm requires, the data have first been deghosted and have
all free-surface multiples eliminated. In this case, the major multiple generator is the coal layer.
We can see the reflector clearly in Figure 5 (in the vicinity of 1s), and the target layer (the reef),
which should be around 1.15s, cannot be seen in Figure 5.

Figures 6 and 7 show the internal-multiple-attenuation results in the pre-stack and post-stack do-
mains, respectively. The reference velocity c0 used is the shallowest layer’s NMO velocity (averaged
horizontally). After internal-multiple attenuation, we can see that a significant amount of internal-
multiple energy is removed in the vicinity of 1.15s. However, we can still barely discern the reef
clearly. The results show that there is marginal improvement of the target event after ISS internal-
multiple attenuation with these limited offset data.

Figures 8 and 9 are the predicted internal multiples in the pre-stack and post-stack domains, respec-
tively. Although the method knows nothing about the generator, the predicted internal multiples
only appear below the main generator. Figure 8 shows that the predicted internal multiples have
primarily far-offset component (with some near-offset component still visible). However, the near-
offset component is critical to obtaining an effective internal-multiple-attenuation result.

Therefore, the lack of the near-offset portion of the internal-multiple prediction is an important
reason why we do not obtain a very satisfactory result in this case. The severely limited offset
coverage of the input data is responsible for the absence of a predicted near-offset multiple, and
that negatively impacts the results of our internal-multiple-attenuation.

The data-acquisition geometry consists of four different azimuths. We also tried to use the data of
each azimuth separately, but the results are not significantly different from the result obtained by
using data of all azimuths together. The use of all azimuth data results in a little better quality in
the post-stack section and has four times higher fold than the single azimuth data have, and that
increases the S/N ratio.
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5 Conclusions

We applied 1.5D pre-stack ISS internal-multiple attenuation on Encana land seismic data and ob-
tained marginal improvement in discerning the target event. The result is not as satisfactory as that
from the same ISS internal-multiple-attenuation algorithm used on the Arabian Peninsula data (Fu
et al., 2010). This is because the ISS internal-multiple-attenuation algorithm requires that a Fourier
transform be performed along the offset axis. That in turn requires a reasonable offset range in
the input data, in order to avoid truncated effects. Considering the data-acquisition geometry (32
traces per CMP gather and a maximum offset of 2000m), this is a positive and encouraging result.
The ISS algorithm for attenuation of the surface and internal multiples requires reasonable data
collection in terms of sampling and offset in order for it to be effective and to deliver its promise.
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Figure 4: Three pre-stack gathers of input data.
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Figure 5: Stack section of input data.
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Figure 6: Three pre-stack gathers of internal multiple attenuation result.
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Figure 7: Stack section of internal multiple attenuation result.
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Figure 8: Three pre-stack gathers of internal multiple prediction.
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Figure 9: Stack section of internal multiple prediction.
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Abstract

The strength of the ISS internal-multiple-attenuation algorithm is that it can predict all
internal multiples with accurate time and approximate amplitude generated by any reflectors
below the free surface at once, directly and without any sub-surface information and inter-
pretative intervention. That strength is always present, independent of the circumstances and
complexity of the geology, and enables this algorithm to be the most capable algorithm currently
available for attenuating internal multiples. However, this algorithm also has limitations. For
example, one open issue is that it can produce spurious events (events that do not exist in the
data) when the input data are generated by three or more reflectors and internal multiples in the
input are treated as subevents. That spurious-events issue is a problem only for the ISS leading-
order term (the term used to derive the current ISS internal-multiple-attenuation algorithm);
specific higher-order terms from ISS will remove those spurious events. A new higher-order ISS
internal-multiple-attenuation algorithm is developed to effectively address the spurious predic-
tions generated by the current leading-order ISS internal-multiple-attenuation algorithm while
at the same time retaining the current algorithm’s recognized strength.

In last year’s Annual Report, the higher-order ISS internal-multiple-attenuation algorithm
for addressing spurious predictions is tested using analytic and synthetic data generated from a
three-reflector model. In this report, we focus on examining the effects of spurious predictions
by using realistic well-log-based data sets and show the significance and value of including
higher-order ISS terms to address the spurious predictions.

1 Introduction

The ISS internal-multiple-attenuation algorithm was first developed by Araújo (1994) and Weglein
et al. (1997). The first term in this algorithm is the input data consisting of primaries and internal
multiples. The second term is called the first-order internal-multiple attenuator; it uses the input
data to predict the first-order internal multiples with accurate time and approximate amplitude.
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The third term is called the second-order internal-multiple attenuator; it uses the input data to
predict the second-order internal multiples with accurate time and approximate amplitude. In the
same manner, the following terms in this algorithm use the input data to predict the third-order,
fourth-order and higher-order internal multiples with accurate time and approximate amplitude.
These predictions of internal multiples of different orders effectively attenuate internal multiples of
different orders in the input data.

In this report, we restrict our analysis to the prediction and attenuation of first-order internal
multiples. To predict the first-order internal multiples, the first-order internal-multiple attenuator
treats all the events in the input data as subevents and combines three subevents nonlinearly
(Weglein et al., 2003). When all three subevents are primaries, a first-order internal multiple with
accurate time and approximate amplitude will be predicted (see Figure 1 and more details in the
next section). This prediction will attenuate the first-order internal multiples in the data.

When internal multiples in the input data themselves act as subevents in the first-order internal-
multiple attenuator, two types of events are predicted. One type is higher-order internal multiples
(Zhang and Shaw, 2010); the other type is spurious/false events that do not exist in the data
(Weglein et al., 2011; Ma et al., 2011; Liang et al., 2011) (see more details in section 3).

It can be shown that the first type of events (i.e., higher-order internal multiples predicted by the
first-order internal-multiple attenuator) will alter the higher-order internal multiples and thereby
assist the higher-order internal-multiple attenuator to attenuate the higher-order internal multiples
in the data. Therefore, the prediction of higher-order internal multiples from the first-order internal-
multiple attenuator is a benefit and asset.

It can also be shown that the second type of events (i.e., spurious events) is fully anticipated by the
Inverse Scattering Series, and specific higher-order terms from the ISS will precisely address those
spurious events (Weglein et al., 2011; Ma et al., 2011; Liang et al., 2011), and taken together with the
first-order internal-multiple attenuator, first-order internal multiples will be predicted (with accurate
time and approximate amplitude) for effectively attenuating the first-order internal multiples in the
data, and no spurious events will be produced at the same time.

2 The ISS leading-order internal-multiple-attenuation algorithm

The ISS leading-order internal-multiple-attenuation algorithm starts with the input data,D(kg, ks, ω),
in 2D, which are the Fourier transform of the deghosted prestack data with the wavelet deconvolved
and the free-surface multiples removed. The second term is the first-order internal-multiple attenu-
ator for the prediction of the first-order internal multiples. In a 2D earth, this prediction is (Weglein
et al., 2003)

b3(kg, ks, ω) =
1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2e

−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞

−∞
dz1b1(kg, k1, z1)e

i(qg+q1)z1
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×
∫ z1−ε

−∞
dz2b1(k1, k2, z2)e

−i(q1+q2)z2

×
∫ ∞

z2+ε
dz3b1(k2, ks, z3)e

i(q2+qs)z3 , (1)

where ω is temporal frequency; ks and kg are the horizontal wavenumbers for the source and
receiver coordinates, respectively; qg and qs are the vertical source and receiver wavenumbers defined
by qi = sgn(ω)

√
ω2

c20
− k2i for i ∈ {g, s}; zs and zg are source and receiver depths; and zj (i ∈

{1, 2, 3}) represents pseudo-depth by using a reference velocity migration. The quantity b1(kg, ks, z)
corresponds to an uncollapsed migration (Weglein et al., 1997) of effective plane-wave incident data.

The data with their first-order internal multiple attenuated are

D(kg, ks, ω) +D3(kg, ks, ω), (2)

where b3(kg, ks, ω) = −2iqsD3(kg, ks, ω).

For a 1-D earth and a normal incident plane wave, equation 1 reduces to

b3(k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)
∫ ∞

z2+ε
dz3e

ikz3b1(z3). (3)

The deghosted data, D(t), for an incident spike wave, satisfy D(ω) = b1(
2ω
c0

), D(ω) is the temporal
Fourier transform of D(t), b1(z) =

∫∞
−∞ e

ikzb1(k)dk, and k = 2ω
c0

is the vertical wavenumber.

Equation 2 then reduces to
D(t) +D3(t), (4)

where D3(t) is Inverse Fourier transform of D3(ω), and D3(ω) = b3(k) for incident spike data.

The idea behind using equation 1 or 3 to predict the first-order internal multiple is treating events in
the data as subevents, and combining different primary subevents satisfying “ lower(A)-higher(B)-
lower(C) " requirement in pseudo-depth domain, see Figure 1.

We denote the three primary-subevents combination as “PPP ”, where P stands for primary.

As its distinct advantages are recognized in Weglein et al. (2011), challenges and limitations are also
pointed out in that paper. For example, spurious prediction can be produced at time when there
are three or more reflectors and internal multiples themselves act as subevents. In next section, we
will briefly review the generation of those spurious prediction and proposed algorithms to reduce
them (Ma et al., 2011; Liang et al., 2011).

3 The higher-order modification of the ISS internal-multiple leading-order al-
gorithm

Early work of Araújo (1994) and Weglein et al. (1997) focuses on the analysis of the leading-order
prediction of first-order internal multiples by treating primaries in the data as subevents. However,
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Figure 1: Combination of subevents for the first-order internal multiple (dashed line), (SABE)time+
(DBCR)time − (DBE)time = (SABCR)time, figure adapted from Weglein et al. (2003)

data consist of both primaries and internal multiples. Hence the internal multiples are inevitably
also treated as subevents. There are many other possible subevent combinations in addition to
PPP , when both primaries and internal multiples are treated as subevents:

b3 = b1 ∗ b1 ∗ b1
= (P + I)(P + I)(P + I)

= PPP + PPI + PIP + IPP + PII + IPI + IIP + III, (5)

where ∗ stands for the nonlinear interaction between the data in equation 1, and P and I stand for
primaries and internal multiples. Notice that we use the above expression to categorize different
possible subevent combinations.

When internal multiples are treated as subevents, Zhang and Shaw (2010) use a two-reflector model
to show that a second-order internal multiple can be predicted (see Figure 2); Ma et al. (2011) and
Liang et al. (2011) use three-reflector and four-reflector examples to show that spurious events are
generated, respectively (see Figures 3 and 4).

It is worth noting that because of the “lower-higher-lower” requirement of the algorithm (see Figure
1), the spurious event in Figure 3 (i.e., P3–I212–P3), can be generated only when the arrival time of
the third primary (P3) is greater than that of the internal multiple (I212). Otherwise, this spurious
event would not be produced.

In Figure 4, the condition for the prediction of spurious event (i.e., P4–P3–I212) is that the arrival
time of the third primary (P3) is smaller than that of the internal multiple (I212).

Ma et al. (2011) and Liang et al. (2011) also isolated higher-order terms in 1-D from ISS to address
the two types of spurious events, see equation 6 and 7,
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z1 
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P2 I212P1 I21212

In a two reflector example, a “Primary-Primary-Internal multiple 
(PPI)” combination predicts a second-order internal multiple. 

Figure 2: Subevent diagram for the prediction of a second-order internal multiple.
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In a three reflector example, a “Primary-Internal multiple-Primary 
(PIP)” combination predicts a spurious event. 

P3P3 I212

Figure 3: Subevent diagram for the prediction of a PIP spurious event, where z3 > (2z2 − z1).
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In a four reflector example, a “Primary-Primary-Internal multiple 
(PPI)” combination predicts another type of spurious event. 

Figure 4: Subevent diagram for the prediction of a PPI spurious event, where z3 < (2z2 − z1).
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bPIP5 (k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b3(z2)
∫ ∞

z2+ε
dz3e

ikz3b1(z3), (6)

and

bPPI5 (k) = 2

∫ ∞

−∞
dz1e

ikz1b3(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)
∫ ∞

z2+ε
dz3e

ikz3b1(z3), (7)

where b1(z) is the same as in equation 3, and b3(z) =
∫∞
−∞ e

ikzb3(k)dk. The superscripts PIP and
PPI in equations 6 and 7 indicate that higher-order terms, bPIP5 and bPPI5 , are included to address
the spurious prediction generated by Primary–Internal multiple–Primary and Primary-Primary-
Internal multiple, respectively. The factor of 2 is used in equation 7 because an internal multiple
can act as a subevent in either the innermost integral or the outermost integral.

By including the higher-order terms in equations 6 and 7, the proposed new algorithm in 1-D is
(Liang et al., 2011):

D(t) +D3(t) +DPIP
5 (t) +DPPI

5 (t), (8)

where D3(t), D
PIP
5 (t) and DPPI

5 (t) are Inverse Fourier transforms of D3(ω), DPIP
5 (ω) and DPPI

5 (ω),
respectively, and DPIP

5 (ω) = bPIP5 (k) and DPPI
5 (ω) = bPPI5 (k) for incident spike data, k = 2ω

c0
.

It should be mentioned that, in the cases where there are only three reflectors, only DPIP
5 is needed

because PPI-type spurious events arise only when there are four or more reflectors.

4 1-D normal incident example with interfering primaries and internal multi-
ples

In Ma et al. (2011) and Liang et al. (2011), the term DPIP
5 term (equation 6) is tested in a three-

reflector example by using analytic and synthetic data, respectively. In this section, we test both
the DPIP

5 and DPPI
5 terms by using more realistic and practical synthetic data (generated by many

reflectors with interfering primaries and internal multiples), compare the reference internal multiples
to the prediction results with/without the inclusion of higher-order terms.

The model (see Figure 5) used to generate the 1-D normal incident data is from blocked velocity
and density well-log data (courtesy of Kuwait Oil Company). It has more than 30 layers, so that
primaries and internal multiples are no longer isolated from each other. The reflectivity method is
used to generate the primary-only and primary-and-internal-multiple synthetic data with a source
ricker wavelet of peak frequency at 25Hz.

The comparison among the true/reference internal multiples (blue line), leading-order prediction
(red line), and leading-order plus higher-order prediction (green line) is shown in Figure 6, where
black arrows point to the significant improvement. The top panel and bottom panel traveltime
ranges are from 3.6s to 4.2s and 4.2s to 4.9s, respectively. It is worth noting (for the purpose of
comparison with the true internal multiples) that the red and green plots are the negatives of the
leading-order prediction and the leading-order plus higher-order prediction, respectively — i.e., the
red plot is −D3(t) and the green plot is −(D3(t) +DPIP

5 +DPPI
5 ).
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Velocity!

Density!

(data courtesy of KOC)!

Figure 5: Velocity and density blocking from well-log data.

5 Extension to multi-D

The proposed algorithm and tests in Ma et al. (2011) and Liang et al. (2013) assume that earth
properties vary only in depth — i.e., that the earth is 1-D. In this section, we propose the algorithm
for use in multiple dimensions. Extending the derivation of equation 1 in Araújo (1994), we provide
the higher-order term DPIP

5 in 2D,

bPIP5 (kg, ks, ω) =
1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2e

−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞

−∞
dz1b1(kg, k1, z1)e

i(qg+q1)z1

×
∫ z1−ε

−∞
dz2b3(k1, k2, z2)e

−i(q1+q2)z2

×
∫ ∞

z2+ε
dz3b1(k2, ks, z3)e

i(q2+qs)z3 , (9)

where b3(kg, ks, z) is an uncollapsed migration of the leading-order prediction. As in the 1-D case,
the difference between equation 1 and 9 is the middle integrand.
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(data courtesy of KOC)!

Figure 6: A comparison among the true internal multiples in blue, the leading-order prediction in
red, and the leading-order plus higher-order prediction in green.

In a three-reflector case, the algorithm in multi-D is

D(kg, ks, ω) +D3(kg, ks, ω) +DPIP
5 (xg, xs, ω) (10)

where bPIP5 (kg, ks, ω) = −2iqsD
PIP
5 (kg, ks, ω).

To test the algorithm in 2-D — i.e., equation 9 — we need to first modify the current code of leading-
order prediction (equation 1) to produce the higher-order prediction (equation 9). The modification
is based on the code of ISS leading-order internal-multiple prediction with angle constraint, by
Terenghi and Weglein (2011).

6 Conclusions and Future plan

In this paper, we exemplified a serious shortcoming (i.e., spurious predictions) of the current ISS
leading-order internal-multiple-attenuation algorithm. We develop, test and analyze the resolution
with a new higher-order ISS algorithm that anticipates and removes the spurious events. This higher-
order ISS internal-multiple-attenuation algorithm retains the strengths of the current leading-order
ISS internal-multiple-attenuation algorithm and addresses one of its limitations.

The synthetic tests on the realistic well-log based data sets in this paper show the significance and
value of including the higher-order ISS terms to address the spurious predictions.
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Abstract

The Inverse Scattering Series (ISS) first-order internal-multiple attenuator (the second term
in the ISS internal-multiple-attenuation algorithm) predicts the first-order internal multiples
with accurate time and approximate amplitude, directly and without subsurface information,
by treating events in the input data as subevents and combining three primary subevents nonlin-
early (Weglein et al., 2003). This prediction of first-order internal multiples effectively attenuates
the first-order internal multiples in the data. However, the input data contain both primaries
and internal multiples. When internal multiples themselves act as subevents in the first-order
internal-multiple attenuator, two different types of events will be produced. The first type is
higher-order internal multiples (for example, second-order internal multiples), and the second
type is spurious events (events that do not exist in the data). For the second type of events, Ma
et al. (2011) and Liang et al. (2011) show that the spurious events are fully foreseen by the ISS
and specific terms from the ISS will precisely address that spurious-events issue. For the first
type of events, we will show in this report that the prediction of higher-order internal multiples
is a benefit and asset. In other words, the first-order internal-multiple attenuator not only pre-
dicts and attenuates the first-order internal multiples in the data, but also predicts higher-order
internal multiples and cooperatively assists and benefits the ISS higher-order internal-multiple
attenuators for attenuating of higher-order internal multiples in the data.

1 Introduction

The ISS internal-multiple-attenuation algorithm starts with the input data,D(kg, ks, ω) in 2D, which
are the Fourier transform of the deghosted prestack data with the wavelet deconvolved and the free-
surface multiples removed. In a 2D earth, the second term is the ISS first-order internal-multiple
attenuator is (Araújo, 1994)

b3(kg, ks, ω) =
1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2e

−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞

−∞
dz1b1(kg, k1, z1)e

i(qg+q1)z1
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×
∫ z1−ε

−∞
dz2b1(k1, k2, z2)e

−i(q1+q2)z2

×
∫ ∞

z2+ε
dz3b1(k2, ks, z3)e

i(q2+qs)z3 , (1)

where ω is temporal frequency; ks and kg are the horizontal wavenumbers for the source and receiver
coordinates, respectively; qg and qs are the vertical source and receiver wavenumbers defined by
qi = sgn(ω)

√
ω2

c20
− k2i for i ∈ {g, s}; zs and zg are source and receiver depths; and zj (i ∈ {1, 2, 3})

represents pseudo-depth using a reference velocity migration. The quantity b1(kg, ks, z) corresponds
to an uncollapsed migration (Weglein et al., 1997) of effective plane-wave incident data.

The data with their first-order internal multiples attenuated are

D(kg, ks, ω) +D3(kg, ks, ω), (2)

where b3(kg, ks, ω) = −2iqsD3(kg, ks, ω).

Early work of Araújo (1994) focused on combining primaries as subevents to predict first-order
internal multiples. However, the input data contain both primaries and internal multiples. Internal
multiples acting as subevents in the ISS internal-multiple-attenuation algorithm were first studied by
Zhang and Shaw (2010) using a two-reflector example. Their work shows that a second-order internal
multiple is predicted by b3 (the leading-order prediction of first-order internal multiples) when a
first-order internal multiple acts as one subevent. Ma and Weglein (2012) further point out that
this prediction of second-order internal multiples from b3, combined with the second-order internal-
multiple prediction from b5, is useful for attenuating the second-order internal multiples in the data
(see equation (3.11) in Ma and Weglein (2012)). This shows the cooperative nature/property of
the ISS internal-multiple-attenuation algorithm. It should be mentioned that the analyses in Zhang
and Shaw (2010) and Ma and Weglein (2012) use a two-reflector example. In this work, we extend
the analysis to a three-reflector example. It should be mentioned that in a three-reflector example,
spurious events can be produced when an internal multiple acts as a subevent. In the next section,
we purposefully design the three-reflector example so that when the data generated by that three-
reflector model are input in to the ISS internal multiple attenuation algorithm, the ISS first-order
internal-multiple attenuator (b3) will produce spuriou events. We will examine the effects of the
prediction of second-order internal multiples from b3 in the presence of spurious events.

2 The prediction result of ISS first-order internal-multiple attenuator in a
three-reflector example

In this short note, we examine the prediction of first-order internal-multiple attenuator using a three-
reflector example. The input data contain three primaries and four first-order internal multiples
generated by this example, see Figure 1. Notice that, in Figure 1, only three primaries and a
first-order internal multiple are plotted.
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Figure 1: Definition of reflection and transmission coefficients

The arrival times of the primaries and internal multiples are t1, t2, (2t2 − t1), t3, (t2 + t3 − t1),
(2t3 − t2), and (2t3 − t1). The three red terms are the arrival times of three primaries, whereas the
four blue terms are the arrival times of four first-order internal multiples. The reflection coefficient
from the nth reflector is defined as Rn, and the transmission coefficient from the mth medium to
the nth medium is defined as Tmn, as shown in Figure 1.

The input data in the pseudo-depth domain are

D(z) = R1δ(z − z1) + T01R2T10δ(z − z2) + T01T12R3T21T10δ(z − z3)−R1R
2
2T01T10δ(z − (2z2 − z1))

−R1R
2
3T01T10T

2
12T

2
21δ(z − (2z3 − z1))−R2R

3
3T01T10T12T21δ(z − (2z3 − z2))

− 2R1R2R3T01T10T12T21δ(z − (z3 + z2 − z1)), (3)

where zi ≡ ti×c0/2, and c0 is the reference velocity for Stolt migration. With a total of seven terms
as input, we can calculate the prediction results from b3 using

b3(k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)
∫ ∞

z2+ε
dz3e

ikz3b1(z3). (4)

We design the model so that (2t2 − t1) < t3 for the production of spurious events. With the
assumption of (2t2 − t1) < t3, the explicit result 1 of b3 using equation 3 is shown in Figure 4.

In Figure 4, the terms in green are three first-order internal multiples, the terms in orange are
six second-order internal multiples, the terms in yellow are the first-order internal multiple and
second-order internal multiple that have the same arrival time (see Figure 2), and the terms in red
are spurious events (see Ma et al. (2011) and Liang et al. (2011)). All the other terms that are not
highlighted are third-order or fourth-order internal multiples. Notice that in the result of Figure 4,
we do not combine the terms that have the same arrival time for third-order or fourth-order internal
multiples.

1We use Mathematica software to perform the analytic calculation
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Figure 2: A same arrival time for a first-order internal multiple (2t3− t1) and second-order internal
multiple (2t3 + t2 − t2 − t1).

In this three-reflector example, both second-order internal multiples and spurious events are pre-
dicted by b3 when internal multiples act as subevents. To examine the effects of the second-order
internal-multiple prediction and spurious events from b3 in a three reflector example, we assign
R1 = 0.5 (T01 = 1 − R1 = 0.5;T10 = 1 + R1 = 1.5), R2 = 0.5 (T12 = 1 − R2 = 0.5;T21 = 1 + R2 =
1.5), Z1 = 10, Z2 = 13, and Z3 = 20 in the result of Figure 4, and compare between the refere-
cen/true internal multiple in the data and the reference/true internal multiple plus the prediction
of b3 (see Figure 3). In Figure 3, the three green arrows point to three first-order internal multiples,
and the six orange arrows point to six second-order internal multiples. The yellow arrow points to
the first-order internal multiple and the second-order internal multiple that have the same arrival
time. The red arrows point to the spurious events that do not exist in the data.

Primary-only input will not predict spurious events, but then the useful second-order internal-
multiple prediction also will not be predicted. Further studies are needed to help us understand
how the Inverse Scattering Series overall addresses the problem. If we restrict our goal to one
of effectively attenuating the first-order internal multiple, we must remove the effects of internal
multiples acting as subevents in order to eliminate the prediction of spurious events.

3 Conclusion and Future plan

To conclude, on one hand internal multiples acting as subevents in b3 will benefit the attenuation of
second-order internal multiples. However, on the other hand, internal multiples acting as subevents
will also produce spurious events. Further work is needed to understand how the inverse scattering
series addresses this problem overall. If we restrict our goal to one of achieving attenuation of
first-order internal multiples without at the same time obtaining spurious prediction, the effect of
internal multiples acting as subevents should be removed.
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Figure 3: Comparison between the internal multiples in black (containing first-order internal mul-
tiple and second-order internal multiples) and internal multiples plus b3 prediction in purple.
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Figure 4: Prediction results of ISS internal-multiple attenuation for first-order internal multiples, b3.
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Abstract

The ISS (Inverse-Scattering-Series) internal-multiple attenuation algorithm (Araújo et al. (1994)
and Weglein et al. (1997)) can predict the correct time and approximate amplitude for all first-
order internal multiples without any information of the earth. This algorithm is effective and
can attenuate internal multiples in many cases. However, in certain places, both on-shore
and off-shore, the multiple is often proximal to or interfering with the primaries. Therefore,
the task of completely removing internal multiples without damaging primaries becomes more
challenging and subtle and currently beyond the collective capability of the petroleum industry.
Weglein (2014) proposed a three-pronged strategy for providing an effective response to this
pressing and prioritized challenge. One part of the strategy is to develop an internal-multiple
elimination algorithm that can predict both the correct amplitude and the correct time for all
internal multiples. The ISS internal-multiple elimination algorithm for all first-order internal
multiples generated from all reflectors in a 1D earth is proposed in this report. The primaries in
the reflection data that enters the algorithm provides that elimination capability, automatically
without our requiring the primaries to be identified or in any way separated. The other events in
the reflection data, that is, the internal multiples, will not be helpful in this elimination scheme.
That is a limitation of this algorithm. We will propose a modified strategy for providing the
elimination ability without the current shortcoming. We note that this elimination algorithm
based on the ISS internal-multiple attenuation algorithm is derived by using reverse engineering
to provide the difference between elimination and attenuation for a 1D earth. This particular
elimination algorithm is model type dependent since the reverse engineering method is model
type dependent. The ISS internal-multiple attenuation algorithm is completely model type
independent and in future work we will pursue the development of an eliminator for a multi-
dimensional earth by identifying terms in the inverse scattering series that have that purpose.

†A first-order internal multiple is an internal multiple with only one downward reflection in its history.

112



Multiples: part II M-OSRP13-14

1 Introduction

The inverse-scattering-series allows all seismic processing objectives, such as free-surface-multiple
removal and internal-multiple removal to be achieved directly in terms of data, without any estima-
tion of the earth’s properties. For internal-multiple removal, the ISS internal-multiple attenuation
algorithm can predict the correct time and an approximate and well-understood amplitude for all
first-order internal multiples generated from all reflectors without requiring any subsurface infor-
mation. If the events in the data are isolated, the energy-minimization adaptive subtraction can fix
the gap between the attenuation algorithm and the elimination algorithm, plus all factors that are
outside the assumed physics of the subsurface and acquisition. However, in certain places, events
often interfere with each other in both on-shore and off-shore seismic data. In these cases, the
criteria of energy minimization adaptive subtraction may fail and the task for completely removing
internal multiples becomes more challenging and beyond the current capability of the petroleum
industry.

For dealing with this challenging problem, Weglein (2014) proposed a three-pronged strategy includ-
ing (1)Develop the ISS prerequisites for predicting the reference wave field and to produce de-ghosted
data Mayhan and Weglein (2014). (2)Develop internal-multiple elimination algorithms from ISS.
(3)Develop a replacement for the energy-minimization criteria for adaptive subtraction. For the sec-
ond part of the strategy, that is, to upgrade the ISS internal-multiple attenuator to eliminator, the
strengths and limitations of the ISS internal-multiple attenuator are noted and reviewed. The ISS
internal-multiple attenuator always attenuates all first-order internal multiples from all reflectors at
once, automatically and without subsurface information. That is a tremendous strength, and is a
constant and holds independent of the circumstances and complexity of the geology and the play.
The primaries in the reflection data that enters the algorithm provides that delivery, automatically
without our requiring the primaries to be identified or in any way separated. The other events in
the reflection data (the internal multiples) when they enter the ISS internal-multiple algorithm will
alter the higher order internal multiples and thereby assist and cooperate with higher order ISS
internal-multiple attenuation terms, to attenuate higher order internal multiples. However, there is
a downside, a limitation. There are cases when internal multiples that enter the attenuator can pre-
dict spurious events. That is a well-understood shortcoming of the leading order term, when taken
in isolation, but is not an issue for the entire ISS internal-multiple capability. It is anticipated by
the ISS and higher order ISS internal multiple terms exist to precisely remove that issue of spurious
event prediction, and taken together with the first order term, no longer experiences spurious event
prediction. Ma et al. (2012) and Ma and Weglein (2014) provided those higher order terms and for
spurious events removal. In a similar way, there are higher order ISS internal multiple terms that
provide the elimination of internal multiples when taken together with the leading order attenuator
term. There are early discussions in Ramírez (2007). And Wilberth Herrera and Weglein (2012)
has derived an algorithm that can eliminate all first-order internal multiples generated at the shal-
lowest reflector for 1D normal incidence. In this report we proposes a general elimination algorithm
for all first-order internal-multiples generated from all reflectors in a 1D earth. Similarly as the
attenuator, the primaries in the reflection data that enters the elimination algorithm provides that
elimination capability, automatically without our requiring the primaries to be identified or in any
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way separated. The internal multiples in the reflection data will not be helpful in this elimination
scheme. We will show how the ISS anticipate that shortcoming and propose a modified strategy
for providing elimination ability without this shortcoming. This elimination algorithm based on
the ISS internal-multiple attenuation algorithm is derived by using reverse engineering method. It
is model type dependent since the reverse engineering method is model type dependent. The ISS
internal-multiple attenuation algorithm is model type independent.

2 The ISS internal-multiple attenuation algorithm and Attenuation Factor for
1D normal incidence

First, we will give a review of the ISS internal-multiple attenuation algorithm before introducing the
elimination algorithm. The ISS internal-multiple attenuation algorithm was first given by Araújo
(1994) and Weglein et al. (1997). The 1D normal-incidence version of the algorithm is presented as
follows:

bIM3 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε1
dz′′eikz

′′
b1(z

′′), (1)

Where b1(z), which is closely related to the data, is the water-speed migration of the data due to
a 1D normal-incidence spike plane wave. In the following example, we will show how to obtain
b1(z) from data and predict internal multiples. The terms ε1 and ε2 are two small positive numbers
introduced to avoid self interaction. This equation can predict the correct time and an approximate
amplitude of all first-order internal multiples.

To demonstrate explicitly the mechanism of the ISS internal-multiple attenuation algorithm and
to examine its properties, Weglein et al. (2003) considered the simplest two-layer model that can
produce an internal multiple. For this model, the reflection data caused by an impulsive incident
wave δ(t− z

c ) is:

D(t) = R1δ(t− t1) + T01R2T10δ(t− t2) + · · · ,
where t1, t2 and R1, R2 are the two-way travel times and the reflection coefficients from the two
reflectors,respectively; and T01 and T10 are the coefficients of transmission between model layers 0
and 1 and 1 and 0, respectively. Then

D(ω) = R1e
iωt1 + T01R2T10e

iωt2 + · · · ,

whereD(ω) is the temporal Fourier transform of D(t).
Given a 1D medium and a normal incident wave, kz = 2ω

c0
and b1(kz) = D(ω), and the following is

obtained:
b1(kz) = R1e

i 2ω
c0

c0t1
2 + T01R2T10e

i 2ω
c0

c0t2
2 + · · · .

The pseudo-depths z1 and z2 in the reference medium are defined as follows:

z1 =
c0t1

2
z2 =

c0t2
2
.
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The input data can now be expressed in terms of k = kz, z1, and z2:

b1(k) = R1e
ikz1 + T01R2T10e

ikz2 + · · · .
The date are now ready for the internal-multiple attenuation algorithm.
Substituting b1(k) into the algorithm, we derive the prediction:

bIM3 (k) = R1R
2
2T

2
01T

2
10e

2ikz2e−ikz1 ,

which in the time domain is:

bIM3 (t) = R1R
2
2T

2
01T

2
10δ(t− (2t2 − t1)).

From the example it is easy to compute the actual first-order internal multiple precisely:

−R1R
2
2T01T10δ(t− (2t2 − t1)).

Therefore, the time prediction is precise, and the amplitude of the prediction has an extra power of
T01T10, which is called the attenuation factor, thus defining exactly the difference between attenu-
ation (represented by bIM3 ) and elimination.

Figure 1: An example of the attenuation factor of a first-order internal multiple generated at the
shallowest reflector. Notice that all red terms are extra transmission coefficients

The procedure for predicting a first-order internal multiple generated at the shallowest reflector is
shown in Figure 1. The ISS internal-multiple attenuation algorithm uses three primaries in the
data to predict a first-order internal multiple. From the figure we can see that, every sub-event on
the left-hand side experiences several phenomena as it makes its way down to the earth then back
to the receiver. When compared with the internal multiple on the right-hand side, the events on
the left-hand side have extra transmission coefficients, which are shown in red. Multiplying all of
those extra transmission coefficients, we get the attenuation factor T01T10 for this first-order internal
multiple generated at the shallowest reflector. And all first-order internal multiples generated at
the shallowest reflector have the same attenuation factor.

Figure 2 shows the procedure for predicting a first-order internal multiple generated at the next
shallowest reflector. In this example, the attenuation factor is (T01T10)

2(T12T21).

To derive a general formula for the amplitude prediction of the algorithm, Ramírez (2007) analyzed
a model with n layers and respective velocities Cn, n being an integer. By using the definitions
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Figure 2: An example of the attenuation factor of a first-order internal multiple generated at the
next shallowest reflector. Notice that all red terms are extra transmission coefficients

R1 = R′1, R′N = RN
∏N−1

i=1
(Ti−1,iTi,i−1), and Einstein’s summation, and we apply them to the

reflection data from a normal-incident spike wave, we can obtain the following:

D(t) = R′nδ(t− tn) + internal multiples. (2)

The generalized prediction of the attenuation algorithm is obtained by

bIM3 (k) = R′iR
′
jR
′
ke
ikzieikzjeikzk , (3)

which in the time domain becomes

bIM3 (t) = R′iR
′
jR
′
kδ(t− (ti + tk − tj)) (4)

By evaluating equation (3) for different values of i, j, and k, the amplitude prediction of first-order
internal multiples is obtained and can be generalized for any number of layers in a 1D model. The
generalization of the internal-multiple’s amplitude states that the overabundance of transmission
coefficients depends on the position of the generating reflector (i.e., where the downward reflection
took place). Compared with the real amplitude of internal multiples in the data, we can obtain the
attenuation factor.

The attenuation factor, AFj , in the prediction of internal multiples, is given by the following:

AFj =

{
T0,1T1,0 (for j = 1)∏j−1

i=1
(T 2
i−1,iT

2
i,i−1)Tj,j−1Tj−1,j (for 1 < j < J)

(5)

The attenuation factor AFj can also be rewritten by using reflection coefficients:

AFj =

{
1−R2

1 (for j = 1)

(1−R2
1)2(1−R2

2)2 · · · (1−R2
j−1)

2(1−R2
j ) (for 1 < j < J)

(6)
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The subscript j represents the generating reflector, and J is the total number of interfaces in the
model. The interfaces are numbered starting with the shallowest location. The attenuation al-
gorithm bIM3 predicts a first-order internal multiple by using three events within the data. The
attenuation factor is directly related to the trajectory of the events, and that trajectory forms the
prediction of the internal multiple.

3 The ISS internal-multiple elimination algorithm for 1D normal incidence

The discussion above demonstrates that all first-order internal multiples generated at the same
reflector have the same attenuation factor. Also, we derived a generalized formula for the attenuation
factor for all reflectors. We can see that the attenuation factor contains all transmission coefficients,
from the shallowest reflector down to the reflector generating the multiple. From the examples
(shown in Figure 1 and 2), we can also see that the middle event contains all those transmission
coefficients. Therefore, our idea is to modify the middle term in the attenuation algorithm to remove
the attenuation factor and make the attenuation algorithm an eliminator. That is, we go from

bIM3 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε1
dz′′eikz

′′
b1(z

′′) (7)

to

bIME (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz

′
F [b1(z

′)]
∫ ∞

z′+ε1
dz′′eikz

′′
b1(z

′′) (8)

For 1D normal incidence, b1(z) is expressed as:

b1(z) =R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3) + · · ·+R′nδ(z − zn) + · · · . (9)

To remove all attenuation factors in the prediction, the term F [b1(z)] should be written as:

F [b1(z
′)] =

R1

AFj=1
δ(z′ − z1) +

R′2
AFj=2

δ(z′ − z2) + · · ·+ R′n
AFj=n

δ(z′ − zn) + · · ·

=
R1

1−R2
1

δ(z′ − z1) +
R′2

(1−R2
1)2(1−R2

2)
δ(z′ − z2) + · · ·

+
R′n

(1−R2
1)2(1−R2

2)2 · · · (1−R2
n−1)

2(1−R2
n)
δ(z′ − zn) + · · · . (10)

The basic strategy to construct F [b1(z)] in terms of b1(z) is to first construct the attenuation factor
by b1(z), and then to construct F [b1(z)] by using b1(z) and attenuation factor. The attenuation
factor can be written in reflection coefficients, and then we can map the reflection coefficients to
R′s (R′s are the amplitudes of the events in data), finally construct the R′s by b1(z), as shown in
Figure 3 . However, we have tried this approach and found that it is difficult to achieve.
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Figure 3: The straight forward strategy

Next, we propose another way to achieve the goal. By introducing a new function called g(z) in
which the amplitude of each event corresponds to a reflection coefficient, we find a way to construct
F [b1(z)] by using b1(z) and g(z). After that, we find an integral equation about b1(z) and g(z). If
we can solve the latter equation for g(z) and integrate it into the first part, we can achieve our goal
(as shown in Figure 4 ).

Figure 4: Modified strategy

By using that modified strategy, the F [b1(z)] is discovered (See Appendix A for the derivation):

F [b1(z)] =
b1(z)

[1− (
∫ z+ε
z−ε dz

′g(z′))2][1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′g(z′′)]2

(11)

g(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′g(z′′)
(12)

To derive the F [b1(z)] from b1(z), g(z) must first be solved in equation (12). Thereafter, g(z) is
integrated into equation (11).

Equation (12) is an integral equation. Generally speaking, this kind of equation does not have
analytical solutions; hence, an approximation must be made for this equation.
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3.1 The First Type of Equation Approximation for g(z)

The simplest approximation for g(z) is:

g(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′g(z′′)

≈ b1(z)
1− 0

≈b1(z) (13)

3.2 The Second Type of Equation Approximation for g(z)

A more accurate approximation for g(z) is presented as follows:

g(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′g(z′′)

≈ b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′b1(z′′)
(14)

3.3 Higher-order approximations

By iterating g(z) in (12), we can obtain a more accurate approximation, as shown in Figure 5.
If we substitute more accurate approximations of g(z) into F [b1(z)], we will get higher orders of
approximation of the elimination algorithm which can predict the correct amplitude of first-order
internal multiples generated at deeper reflectors.

3.4 A modified strategy of using b1+b3 instead of b1 for the elimination algorithm

The primaries in the reflection data that enters the elimination algorithm (both 1D normal incidence
and 1D pre-stack) provide that elimination capability, automatically without our requiring the
primaries to be identified or in any way separated. The internal multiples in the data will not
be helpful in this elimination scheme. That is a limitation of current algorithm. Now, we will
show the modified strategy for the internal-multiple elimination algorithm that can address the
limitation. As shown in figure 6, b1, which is very close to data, contains primaries, first-order
internal multiples, and higher-order internal multiples. We use the attenuation algorithm to predict
first-order internal multiples (that is b3) with the correct time and the approximate amplitude. Due
to the multiples in the data, the attenuation algorithm also generates spurious events (Ma et al.
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Figure 5: different approximations for g(z)

(2012)) and makes prediction for higher-order multiples at the same time. Similarly, the internal
multiples entering the elimination algorithm will cause an error . Here is the strategy for addressing
this shortcoming, since in b1 + b3 the first-order internal multiples are attenuated and it is a good
approximation for data with only primaries. If we use b1 + b3 instead of b1 for the input data for the
elimination algorithm, the predicted spurious events and higher-order multiples due to first-order
internal multiples in the data are also attenuated. All events in the red circle are small compared
with the predicted first-order internal multiples and can be ignored.

3.5 Numerical tests for the modified strategy applied to a 34-reflector model
that is based on well log velocity data

In this section, we will test the modified strategy for a 34-reflector model under 1D normal incidence.
And the modified strategy we proposed in this paper can be easily extended to the 1D pre-stack
version. Figure 7 shows the 34-reflector model and Figure 8 shows the input data. In this test we
used a 40th approximation of the algorithm by iterations, as is shown in:

g1(z) = b1(z) (15)

gn+1(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′gn(z′′)
(16)
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Figure 6: using b1 + b3 instead of b1 as the input data for the elimination algorithm

We tested the ISS internal-multiple attenuation algorithm, the elimination algorithm and the mod-
ified strategy for the elimination algorithm. From the result we conclude that using b1+b3 as the
input significantly reduced errors and generates better prediction for all first-order internal multiples
generated from all reflectors.

Figure 9,11,13 show the prediction of different algorithms/strategies compared with the input data.
Figure 10,12,14 shows a small time interval of figure 9,11,13 respectively.

4 The ISS internal-multiple elimination algorithm for 1D pre-stack data

4.1 A 2-reflector analytic example for the ISS internal-multiple attenuation
algorithm in a 1D pre-stack acoustic medium

Now we will go on to extend the elimination algorithm for a 1D pre-stack data. Before that we need
to better understand the mechanism of the attenuation algorithm for a 1D pre-stack data. What
does b1 looks like for a 1D pre-stack data? Is there any analog of the attenuation factors in 1D
pre-stack acoustic medium? If yes, what is it?

In order to answer these questions, we will look at an analytic example for a 2-reflector acoustic
medium in 1D pre-stack.
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Figure 7: model Figure 8: input data

The first question is what is b1 in 1D pre-stack? We know that b1 is closely related to the measured
data D. If we can get the data, we can obtain b1. Thus, first we need to obtain the data. Let
us consider a delta source at (xs, zs), wherein the wave generated at (xg, zg) by this source is the
Green’s function:

G0(xg, zg, xs, zs, ω) =
1

2π

∫ ∞

−∞
dk′s

eik
′
s(xg−xs)eiq

′
s|zg−zs|

2iq′s
(17)

Let us set zs = 0 and let zg be positive, so that we can evaluate the absolute value,

G0(xg, zg > 0, xs, zs = 0, ω) =
1

2π

∫ ∞

−∞
dk′s

e−ik
′
sxs

2iq′s
eik
′
sxg+iq

′
szg . (18)

Then, for simplicity, we will ignore the evanescent part, which means k′s < ω/c. That does not
mean the algorithm can not handle the evanescent part. However, for many cases the evanescent
part is small and can be ignored, and the math will be much simpler and easier to understand. Now
the Green’s function is:

G0(xg, zg > 0, xs, zs = 0, ω) =
1

2π

∫ ω/c

−ω/c
dk′s

e−ik
′
sxs

2iq′s
eik
′
sxg+iq

′
szg . (19)

At this point, G0 can be regarded as a superposition of plane waves eik′sx+iq′sz with weights e−ik
′
sxs

2iq′s
.

For a plane wave eik′sx+iq′sz incident in an acoustic medium, the reflected wavefield is: (Note that It
can be calculated by using the forward scattering series, as in Nita et al. (2004))

D(k′s, q
′
s, xg, zg = 0) = R(k′s, q

′
s)e

ik′sxge2iq
′
sz1 . (20)
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Figure 9: attenuator(red) compared with the in-
put data(blue)

Figure 10: A small time interval of figure 9

Figure 11: elimination(red) compared with the in-
put data(blue), input b1.

Figure 12: A small time interval of figure 11

Figure 13: elimination(red) compared with the in-
put data(blue), input b1 + b3.

Figure 14: A small time interval of figure 13
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Figure 15: prestack

Then the total wave-field is (we set zg = zs = 0):

D(xs, zs = 0, xg, zg = 0, ω) =
1

2π

∫ ω/c

−ω/c
dk′s

e−ik
′
sxs

2iq′s
D(k′s, q

′
s, xg, zg = 0). (21)

Now we get the data at one receiver (xg,0) from one delta source (xs,0) and rewrite it as:

D(xs, xg, ω) =
1

2π

∫ ω/c

−ω/c
dk′s

e−ik
′
sxs

2iq′s
R(k′s, q

′
s)e

ik′sxge2iq
′
sz1 (22)

This is in the frequency-space domain, whereas the attenuation algorithm works in the frequency-
wavenumber domain. After Fourier transforming over the source and receivers, we convert the data
to the frequency-wavenumber domain1.

D(ks, kg, ω) = δ(ks − kg)
R(ks, qs)e

2iqsz1

4πiqs
(−ω/c < ks < ω/c) (23)

Now we define b1(ks, kg, ω) as (in the following discussion, we assume that −ω/c < ks < ω/c):

b1(ks, kg, ω) = −2iqsD(ks, kg, ω) (24)

= − 1

2π
δ(ks − kg)R(ks, qs)e

2iqsz1 . (25)

Then, b1(ks, kg, ω) and the attenuation algorithm prediction b3(ks, kg, ω) are related by the 2D
internal-multiple attenuation algorithm:

b3(kg, ks, ω) =

∫ ∞

−∞

∫ ∞

−∞
dk1dk2

∫ ∞

−∞
dzei(qg+q1)zb1(kg, k1, z)

∫ z

−∞
dz′ei(−q1−q2)z

′
b1(k1, k2, z

′)

1See appendix B for derivation
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×
∫ ∞

z′
dz′′ei(q2+qs)z

′′
b1(k2, ks, z

′′)

Next with the definition of b1(ks, 2qs) and its prediction b3(ks, 2qs) for 1D pre-stack data, we have:

b1(ks, kg, ω) = − 1

2π
δ(ks − kg)b1(ks, 2qs) (26)

b3(kg, ks, qg + qs) = − 1

(2π)3
δ(kg − ks)b3(ks, 2qs). (27)

Then, b1(ks, 2qs) and b3(ks, 2qs) are related by the 1D pre-stack algorithm:

b3(ks, 2qs) =

∫ ∞

−∞
dze2iqszb1(ks, z)

∫ z

−∞
dz′e−2iqsz

′
b1(ks, z

′)
∫ ∞

z′
dz′′e2iqsz

′′
b1(ks, z

′′) (28)

Ignoring the subscript s, we have

b3(k, 2q) =

∫ ∞

−∞
dze2iqzb1(k, z)

∫ z

−∞
dz′e−2iqz

′
b1(k, z

′)
∫ ∞

z′
dz′′e2iqz

′′
b1(k, z

′′). (29)

In the equation, for the first primary, we have

b1(k, 2q) = R(k, q)e2iqz1 , (30)

and b1(k, z) is the Fourier transform of b1(k, 2q) from 2q to z.

We can also get the reflection data from the second reflector, and we can obtain a first order internal
multiple as shown in Figure 16

Now, b1 can be written as,

b1(k1, 2q1) = R1(k1, q1)e
2iq1z1

+T01R2(k2, q2)T10e
2iq1z1e2iq2(z2−z1)

−T01R2R1R2T10e
2iq1z1e4iq2(z2−z1)

Here, q1 and q2 are vertical wavenumbers at each layer, and q2 is a function of q1. To Fourier
transform from q1 to z, first we need to substitute q2 with q1.

Using the relation,

q21 + k21 = (
ω

c1
)2

q22 + k22 = (
ω

c2
)2

k1 = k2,
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Figure 16: prestack

we can express q2 in q1 and k1:

q2 =

√
(
c21
c22
− 1)k21 +

c21
c22
q21

=
c1
c2
q1 + [

√
(
c21
c22
− 1)k21 +

c21
c22
q21 −

c1
c2
q1]

=
c1
c2
q1 +

(
c21
c22
− 1)k21√

(
c21
c22
− 1)k21 +

c21
c22
q21 + c1

c2
q1

=
c1
c2
q1 + S(k1, q1)

Now we substitute q2 with q1:

b1(k1, 2q1) = R1(k1, q1)e
2iq1z1

+R′2(k1, q1)e
2i(z2−z1)S(k1,q1)e2iq1(z1+

c1
c2

(z2−z1))
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−R′212(k1, q1)e4i(z2−z1)S(k1,q1)e
2iq1(z1+

2c1
c2

(z2−z1))

= R1(k1, q1)e
2iq1z1

+R′2(k1, q1)e
2i(z2−z1)S(k1,q1)e2iq1z

′
2

−R′212(k1, q1)e4i(z2−z1)S(k1,q1)e2iq1(2z
′
2−z1)

The predicted internal multiple should be:

b3(k1, 2q1) = R′2(k1, q1)R1(k1, q1)R
′
2(k1, q1)e

4i(z2−z1)S(k1,q1)e2iq1(2z
′
2−z1)

Comparing the predicted amplitude of the internal multiple with the actual amplitude of the internal
multiple, we have:

R′212(k1, q1) = T01R2R1R2T10

=
R′2(k2, q2)R1(k1, q1)R

′
2(k2, q2)

T01(k1, q1)T10(k1, q1)

We can see that they differed by a factor T01(k1, q1)T10(k1, q1). That is the attenuation factor for
the 1D pre-stack acoustic medium.

4.2 The ISS internal-multiple elimination algorithm for 1D pre-stack data

Now we have the attenuation factor for the 1D pre-stack acoustic medium and it lights the way to
extending the 1D normal-incidence algorithm to 1D pre-stack data. Below shows the 1D pre-stack
acoustic algorithm. In the 1D pre-stack elimination algorithm, due to the angle-dependent reflec-
tion coefficients, we can no longer just integrate the data in the k-z domain to get the reflection
coefficients-we need to go to the k-q domain in which each pair k-q corresponds to a reflection coef-
ficient. The differences between the 1D pre-stack algorithm and the 1D normal incidence algorithm
are that the 1D pre-stack algorithm has one more variable k, and it uses the reflection coefficients
in the k-q domain instead of the direct integral in the k-z domain.

bIME (k, 2q) =

∫ ∞

−∞
dze2iqzb1(k, z)

∫ z−ε1

−∞
dz′e−2iqz

′
F [b1(k, z

′)]
∫ ∞

z′+ε2
dz′′e2iqz

′′
b1(k, z

′′)

F [b1(k, z)] =
1

2π

∫ ∞

−∞

∫ ∞

−∞
dz′dq′

× e−iq
′zeiq

′z′b1(k, z
′)

[1−
∫ z′−ε
−∞ dz′′b1(k, z′′)eiq

′z′′
∫ z′′+ε
z′′−ε dz

′′′g∗(k, z′′′)e−iq′z′′′ ]2[1− |
∫ z′+ε
z′−ε dz

′′g(k, z′′)eiq′z′′ |2]
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g(k, z) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
dz′dq′

e−iq
′zeiq

′z′b1(k, z
′)

1−
∫ z′−ε
−∞ dz′′b1(k, z′′)eiq

′z′′
∫ z′′+ε
z′′−ε dz

′′′g∗(k, z′′′)e−iq′z′′′

4.3 Initial numerical tests for the ISS internal-multiple elimination algorithm
for a 1D pre-stack data

We now test the 1D pre-stack algorithm for a two-reflector model.

We test the 1D pre-stack acoustic internal multiple elimination algorithm for a two-reflector model.
The layers have densities 1.0g/cm3, 1.2g/cm3, 2.0g/cm3 and velocities 1500m/s, 3000m/s, and
4500m/s respectively. Figure 17 shows the data and figure 18 and 19 show the attenuation and
elimination algorithm predictions respectively. Figure 20 to Figure 27 show different traces in
different offsets (the elimination algorithm prediction (red) and attenuation algorithm prediction
(green) compared to data (blue)). We can see the elimination algorithm keeps the correct time and
can generate better amplitude.
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Figure 17: data Figure 18: internal multiple attenuation predic-
tion

Figure 19: internal multiple elimination predic-
tion
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Figure 20: the elimination algorithm prediction (red) and attenuation algorithm prediction (green)
compared to data (blue) at offset = 0m

Figure 21: the elimination algorithm prediction (red) and attenuation algorithm prediction (green)
compared to data (blue) at offset = 0m. After compensating for the tails of primaries.

Figure 22: the elimination algorithm prediction (red) and attenuation algorithm prediction (green)
compared to data (blue) at offset = 200m

Figure 23: the elimination algorithm prediction (red) and attenuation algorithm prediction (green)
compared to data (blue) at offset = 200m. After compensating for the tails of primaries.

Figure 24: the elimination algorithm prediction (red) and attenuation algorithm prediction (green)
compared to data (blue) at offset = 400m
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Figure 25: the elimination algorithm prediction (red) and attenuation algorithm prediction (green)
compared to data (blue) at offset = 400m. After compensating for the tails of primaries.

Figure 26: the elimination algorithm prediction (red) and attenuation algorithm prediction (green)
compared to data (blue) at offset = 600m

Figure 27: the elimination algorithm prediction (red) and attenuation algorithm prediction (green)
compared to data (blue) at offset = 600m. After compensating for the tails of primaries.
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5 Conclusion

The pre-stack 1D ISS internal multiple elimination algorithm for all first-order internal multiples
from all reflectors is proposed in this report. Numerical tests are carried out to evaluate this new
algorithm and to determine the strengths and limitations. The results shows that given no wavelet
data with perfect preprocessing work finished (deghosting, free-surface multiple removal, et al.) the
elimination algorithm can predict better amplitude of the internal multiples than the attenuation
algorithm. In discussing the elimination algorithm, the primaries in the reflection data that enters
the algorithm provide that elimination capability, automatically without our requiring the primaries
to be identified or in any way separated. The other events (internal multiples) in the reflection data
will not be helpful in this elimination scheme. We also propose a modified strategy for dealing with
this issue. This algorithm is a part of the three-pronged strategy for elimination of all internal
multiples which is especially relevant and provide value when primaries and internal multiples are
proximal to and/or interfere with each other in both on-shore and off-shore data. We note that this
particular elimination algorithm is model type dependent since the reverse engineering method is
model type dependent. The ISS internal-multiple attenuation algorithm is model type independent
and in future work we will pursue the development of an eliminator for a multi-dimensional earth
by identifying terms in the inverse scattering series that have that purpose.
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Appendix

A Derivation of the algorithm for the elimination of all first-order internal
multiples from all reflectors in a 1D medium

The algorithm is given by:

F [b1(z)] =
b1(z)

[1− (
∫ z+ε
z−ε dz

′g(z′))2][1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′g(z′′)]2

g(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′g(z′′)

with

b1(z) =R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3) + · · ·+R′nδ(z − zn) + · · ·
g(z) =R1δ(z − z1) +R2δ(z − z2) +R3δ(z − z3) + · · ·+Rnδ(z − zn) + · · ·

(
∫ z+ε
z−ε dz

′′g(z′′) is a function of z)

First Let us calculate
∫ z+ε
z−ε dz

′′g(z′′) for the given g(z):

∫ z+ε

z−ε
dz′′g(z′′) =

∫ z+ε

z−ε
dz′′[R1δ(z

′′ − z1) +R2δ(z
′′ − z2) + · · ·+Rnδ(z

′′ − zn) + · · · ]

=

∫ ∞

−∞
dz′′[R1δ(z

′′ − z1) +R2δ(z
′′ − z2) + · · ·+Rnδ(z

′′ − zn) + · · · ]

×H(z′′ − (z − ε))H((z + ε)− z′′)
=R1H(z1 − (z − ε))H((z + ε)− z1) +R2H(z2 − (z − ε))H((z + ε)− z2)

+ · · ·+RnH(zn − (z − ε))H((z + ε)− zn) + · · ·
=R1H((z1 + ε)− z)H(z − (z1 − ε)) +R2H((z2 + ε)− z)H(z − (z2 − ε))

+ · · ·+RnH((zn + ε)− z)H(z − (zn − ε)) + · · ·

(

∫ z+ε

z−ε
dz′′g(z′′))2

=R2
1H((z1 + ε)− z)H(z − (z1 − ε)) +R2

2H((z2 + ε)− z)H(z − (z2 − ε))
+ · · ·+R2

nH((zn + ε)− z)H(z − (zn − ε)) + · · ·
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b1(z
′)
∫ z′+ε

z′−ε
dz′′g(z′′)

=R2
1δ(z

′ − z1) +R2R
′
2δ(z

′ − z2) +R3R
′
3δ(z

′ − z3) + · · ·+RnR
′
nδ(z

′ − zn) + · · ·

∫ z−ε

−∞
dz′b1(z′)

∫ z′+ε

z′−ε
dz′′g(z′′)

=

∫ z−ε

−∞
dz′[R2

1δ(z
′ − z1) +R2R

′
2δ(z

′ − z2) + · · ·+RnR
′
nδ(z

′ − zn) + · · · ]

=

∫ ∞

−∞
dz′H((z − ε)− z′)[R2

1δ(z
′ − z1) +R2R

′
2δ(z

′ − z2) + · · ·+RnR
′
nδ(z

′ − zn) + · · · ]

=R2
1H((z − ε)− z1) +R2R

′
2H((z − ε)− z2) + · · ·+RnR

′
nH((z − ε)− zn) + · · ·

=R2
1H(z − (z1 + ε)) +R2R

′
2H(z − (z2 + ε)) + · · ·+RnR

′
nH(z − (zn + ε)) + · · ·

Now we can prove the first part of the equation:

F [b1(z)]

=
b1(z)

[1− (
∫ z+ε
z−ε dz

′g(z′))2][1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′g(z′′)]2

=
b1(z)

[1−R2
1H((z1 + ε)− z)H(z − (z1 − ε))− · · · ][1−R2

1H(z − (z1 + ε))−R2R′2H(z − (z2 + ε))− · · · ]2

=
R1

1−R2
1

δ(z − z1) +
R′2

(1−R2
1)2(1−R2

2)
δ(z − z2) + · · ·

+
R′n

(1−R2
1)2(1−R2

2)2 · · · (1−R2
n−1)

2(1−R2
n)
δ(z − zn) + · · ·

=
R1

AFj=1
δ(z − z1) +

R′2
AFj=2

δ(z − z2) + · · ·+ R′n
AFj=n

δ(z − zn) + · · ·

For the second part of the equation, we have:

g(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′g(z′′)

b1(z
′)
∫ z′+ε

z′−ε
dz′′g(z′′)
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=R2
1δ(z

′ − z1) +R2R
′
2δ(z

′ − z2) +R3R
′
3δ(z

′ − z3) + · · ·+RnR
′
nδ(z

′ − zn) + · · ·

∫ z−ε

−∞
dz′b1(z′)

∫ z′+ε

z′−ε
dz′′g(z′′)

=

∫ z−ε

−∞
dz′[R2

1δ(z
′ − z1) +R2R

′
2δ(z

′ − z2) + · · ·+RnR
′
nδ(z

′ − zn) + · · · ]

=

∫ ∞

−∞
dz′H((z − ε)− z′)[R2

1δ(z
′ − z1) +R2R

′
2δ(z

′ − z2) + · · ·+RnR
′
nδ(z

′ − zn) + · · · ]

=R2
1H((z − ε)− z1) +R2R

′
2H((z − ε)− z2) + · · ·+RnR

′
nH((z − ε)− zn) + · · ·

=R2
1H(z − (z1 + ε)) +R2R

′
2H(z − (z2 + ε)) + · · ·+RnR

′
nH(z − (zn + ε)) + · · ·

b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′g(z′′)

=R1δ(z − z1) +
R′2

1−R1R1
δ(z − z2) +

R′3
1−R1R1 −R′2R2

δ(z − z3) + · · ·

+
R′n

1−R1R1 −R′2R2 − · · · −R′n−1Rn−1
δ(z − zn)

=R1δ(z − z1) +R2δ(z − z2) +R3δ(z − z3) + · · ·+Rnδ(z − zn) + · · ·
=g(z)

Thus the second equation is proved.

In the derivation we used:Ri =
R′i

1−R1R1−R′2R2−···−R′i−1Ri−1
It can be proved:

Ri =
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)(1−R2

i−1)

=
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)− (1−R2

1)(1−R2
2) · · · (1−R2

i−2)R
2
i−1

=
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)− (1−R2

1)(1−R2
2) · · · (1−R2

i−2)Ri−1Ri−1

=
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)−R′i−1Ri−1

=
R′i

1−R1R1 −R′2R2 − · · · −R′i−1Ri−1
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B Fourier transform of the data from the frequency-space domain to the
frequency-wavenumber domain

D(xs, xg, ω) =
1

2π

∫ ω/c

−ω/c
dk′s

e−ik
′
sxs

2iq′s
R(k′s, q

′
s)e

ik′sxge2iq
′
sz1 (31)

D(ks, xg, ω) =
1

2π

∫ ∞

−∞
dxse

iksxs

∫ ω/c

−ω/c
dk′s

e−ik
′
sxs

2iq′s
R(k′s, q

′
s)e

ik′sxge2iq
′
sz1

=
1

2π

∫ ω/c

−ω/c

∫ ∞

−∞
dxse

i(ks−k′s)xsdk′s
R(k′s, q

′
s)e

ik′sxge2iq
′
sz1

2iq′s

=
1

2π

∫ ω/c

−ω/c
dk′sδ(ks − k′s)

R(k′s, q
′
s)e

ik′sxge2iq
′
sz1

2iq′s

=
R(ks, qs)e

iksxge2iqsz1

4πiqs
(−ω/c < ks < ω/c)

D(ks, kg, ω) =

∫ ∞

−∞
dxge

−ikgxgR(ks, qs)e
iksxge2iqsz1

4πiqs
(−ω/c < ks < ω/c)

= δ(ks − kg)
R(ks, qs)e

2iqsz1

4πiqs
(−ω/c < ks < ω/c)
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Short note: Inverse scattering series internal multiple attenuation algorithm for
a 3-D source and 1-D subsurface
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Abstract

The ISS internal multiple attenuator was developed in Cartesian coordinates (Araújo (1994),We-
glein et al. (2003)) and demands a “complete” dataset for a 3-D source and 3-D earth. Even for a
3-D source and 1-D earth (a realistic case in Central North Sea, Canada, and Middle East), the
areal coverage of receivers in acquisition is required for one shot gather in Cartesian coordinates.
In this shot note, the ISS internal multiple attenuator will be changed into polar coordinates for
a 3-D source and 1-D earth, which allows a single source and receivers on a single line, rather
than a full surface of receivers. The reduced form will benefit the 3-D source application and
computational costs of ISS internal multiple eliminator in the future, which is a step in the
M-OSRP three-pronged strategy to address the pressing challenges with multiples.

1 Introduction

In the M-OSRP three-pronged strategy, which is proposed by Weglein (2013), the pressing challenges
in current internal multiple removal technologies are, (1) preprocessing for on-shore application, (2)
developing internal multiple eliminator and (3) finding a replacement for the energy-minimization
criteria for adaptive subtraction. In order to solve the second problem, Herrera and Weglein (2013)
and Zou and Weglein (2013) in M-OSRP group have proposed the ISS leading-order internal mul-
tiple eliminator, which can compensate the transmission loss in attenuator, and the algorithm has
been extended to 1.5-D (Y. Zou, A. Weglein,13-14 M-OSRP Annual Report). Since the study nat-
urally starts from a 1-D earth and the real source in acquisition has a 3-D signature, it is necessary
to consider a 3-D source and 1-D earth attenuator for the initial investigation of eliminator. In
addition, we would like to point out that there are on-shore and off-shore regions in 1-D structure
where the seismic data suffers from serious internal multiple problems, for instance, Central North
Sea (Duquet et al. (2013)), Canada and Middle East.
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Current ISS internal multiple 2-D source attenuator has the ability to solve the internal multiple
problems in a field data. For example, the 1-D earth-2-D source algorithm, which is derived from
2-D source algorithm with the assumption of a 1-D layered earth, has been successfully applied
on Encana data and produces a positive result (Q. Fu, 2014). The original 2-D earth-2-D source
algorithm demands a collection of shot records on a line, however, the 1-D earth-2-D source reduces
the requirement to only one shot record. For a more realistic world of 3-D earth-3-D source, the
algorithm needs the sources everywhere on the measurement plane and each source needs the re-
ceivers everywhere on the plane. For a 3-D source and 2-D earth, where the properties do not vary
in y-direction, the algorithm still asks for sources on a line (x-direction) and an areal coverage of
receivers on the plane for each source. Even with 1-D earth assumption in Cartesian coordinates,
the attenuator requires one shot record with an areal coverage, namely the information from all the
receivers in this area, for a fixed source.

In this report, the ISS algorithm for a 3-D source and 1-D earth will be rewritten in polar coordi-
nates, which allows a single 3-D source and the receivers on one line, rather than a full surface of
receivers. The numerical tests are shown, as an initial comparison of the 2-D source internal multi-
ple prediction, 3-D source internal multiple prediction and 3-D source internal multiple prediction
with an asymptotic Bessel function for a 3-D data set. The results indicate that the reduced form
can save the computational costs and preserve the internal multiple prediction from the risks of
wrongly assuming 2-D line sources with applying 2-D ISS internal multiple attenuation algorithm
to a 3-D dataset. Also, the difference in results will be amplified when the attenuator (b3) enters
the eliminator algorithm, e.g. that Yanglei Zou is developing, which is a crucial step in M-OSRP
three-pronged strategy.

2 Circular symmetry under the cylindrical coordinate in 1-D earth

3-D data generated by 1-D earth only depends on the source-receiver offset and the frequency, which
has a spatial circular symmetry under cylindrical coordinate (independence of azimuth angle). That
symmetry makes it convenient to study the 1-D earth problem under cylindrical coordinate, in which
the position in a 3-D world is characterized by a radial length, an azimuth angle and a vertical po-
sition. Let us define the 3-D vector in a cylindrical coordinate as (ri, θi, zi) in spatial domain and
(kri, φi, kzi) in wave-number domain, separately. The diagram for a 3-D vector is shown in figure 1.

The dependence of 3-D data for a 1-D earth can be expressed as D1DE(|~rg − ~rs|, εg, εs;ω) or
D1DE(rh, εg, εs, ω), where the ~rg and ~rs are the horizontal projection of the receivers and the source
separately, and rh is the magnitude of the difference between ~rg and ~rs. And the εg and εs are the
constant depths of receivers and sources, which are omitted in later discussion. For convenience,
the superscript 1DE represent the 1-D earth assumption for different sources (For example, line
source: 2D-1DE; point source: 3D-1DE). In the next step, we will show the symmetry of the data
under the two-dimensional Fourier transform. The 3-D data for 1-D earth can be transformed to
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Figure 1: Figure 1: Cylindrical coordinates for spatial domain (left) and wave-number domain
(right).

kri − ω domain as,

D( ~kg, ~ks;ω) (1)
= FT [D1DE(|~rg − ~rs|;ω)] (2)

=

∫∫ ∫∫
ei

~krg · ~rgD1DE(|~rg − ~rs|;ω)e−i
~krs·~rsd~rgd~rs (3)

=

∫∫ ∫∫
ei

~krg ·( ~rg−~rs)D1DE(|~rg − ~rs|;ω)ei(
~krg− ~krs)·~rsd~rgd~rs (4)

=

∫∫ ∫∫
ei

~krg · ~rhD1DE(|~rh|;ω)ei(
~krg− ~krs)·~rsd~rhd~rs (5)

=

∫∫
ei

~krg · ~rhD1DE(|~rh|;ω)d~rh ·
∫∫

ei(
~krg− ~krs)·~rsd~rs (6)

= D1DE(krg, ω)(2π)2
δ(krg − krs)δ(φg − φs)

krg
. (7)

The step in equation 5 can be proven by Jacobian determinant in appendix A. And the symmetry
factor in equation 7 contains the Dirac delta in cylindrical coordinate, which is equivalent to δ(kxg−
kxs)δ(kyg − kys) (appendix B). In order to apply 1-D earth symmetry in the 3-D algorithm, we
continue with the definition of b1( ~kg, ~ks, qs + qs), which leads to

b1( ~kg, ~ks, qg + qs) (8)
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= −2iqs ·D( ~kg, ~ks;ω) (9)

= −2iqs ·D1DE(krg;ω)(2π)2
δ(krg − krs)δ(φg − φs)

krg
(10)

= b1DE1 (krg, qg + qs)(2π)2
δ(krg − krs)δ(φg − φs)

krg
, (11)

where qi = sgn(ω)
√

(ω/c0)2 − k2ri. The symmetry factor in equation 11 is independent of kz =

qg + qs. In the following step, b1 needs to be transformed back to depth domain:

b1( ~kg, ~ks, z) = b1DE1 (krg, z)(2π)2
δ(krg − krs)δ(φg − φs)

krg
, (12)

which is an un-collapsed Stolt migration. In the next section, the structure of 1-D earth symmetry
will be applied into current 3-D ISS internal multiple attenuation algorithm.

3 3-D ISS internal multiple attenuation algorithm for 1-D earth

The inverse scattering subseries for internal multiples provides a comprehensive theory for removing
all multiples from an arbitrary earth without requiring any subsurface information. The 3-D leading-
order internal multiple prediction term in this infinite subseries is (Weglein et al. (2003),Terenghi
and Weglein (2009)):

b3D3 (kxg , kyg , kxs , kys , ω)

=
1

(2π)4

∫∫
dkx1dkx2

∫∫
dky1dky2e

−iq1(εg−εs)eiq2(εg−εs)

×
∫ +∞

−∞
dz1b

3D
1 (kxg , kyg , kx1 , ky1 , z1)e

i(qg+q1)z1

×
∫ z1−ε

−∞
dz2b

3D
1 (kx1 , ky1 , kx2 , ky2 , z2)e

−i(q1+q2)z2

×
∫ +∞

z2+ε
dz3b

3D
1 (kx2 , ky2 , kxs , kys , z2)e

i(q2+qs)z3 , (13)

where the vertical wavenumber is qi = sgn(ω)
√

ω2

c20
− k2x(i) − k

2
y(i)

. Using the symmetry of 1-D earth
presented in equation 12, the reduced 3-D algorithm in a cylindrical coordinate can be obtained as,

b3D−1DE3 · δ(krg − krs)δ(φg − φs)
krg

=

∫ ∞

0
kr1dkr1

∫ 2π

0
dφ1

∫ ∞

0
kr2dkr2

∫ 2π

0
dφ2

×
∫ +∞

−∞
dz1b

3D−1DE
1 (krg, z1)e

i(qg+q1)z1
δ(krg − kr1)δ(φg − φ1)

krg
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×
∫ z1−ε

−∞
dz2b

3D−1DE
1 (kr1, z2)e

−i(q1+q2)z2 δ(kr1 − kr2)δ(φ1 − φ2)
kr1

×
∫ +∞

z2+ε
dz3b

3D−1DE
1 (kr2, z3)e

i(q2+qs)z3 δ(kr2 − krs)δ(φ2 − φs)
kr2

, (14)

where the receivers and sources are located at the same depth (εg = εs). The lateral integrals vanish
because of the Dirac delta. The reduced form of the 3-D algorithm is

b3D−1DE3 (krh.ω) (15)

=

∫ +∞

−∞
dz1b

3D−1DE
1 (krh, z1)e

i2qz1

∫ z1−ε

−∞
dz2b

3D−1DE
1 (krh, z2)e

−i2qz2
∫ +∞

z2+ε
dz3b

3D−1DE
1 (krh, z3)e

i2qz3 ,

where krh = krg = krs and q = sgn(ω)
√

ω2

c20
− k2rh. Here, the simplified 3-D algorithm for 1-D earth

has the same structure as a reduced 2-D algorithm (Y. Zou, A. B. Weglein, 13-14 M-OSRP annual
report), but dimension of inverse Fourier transform is different. Applying the two-dimensional
Fourier transform or the Bessel-Fourier transform on both sides of equation 16, we can obtain

b3D−1DE3 (rh;ω) = (
1

2π
)2
∫∫

d ~khe
i ~kh· ~rhb3D−1DE3 (krh;ω)

= (
1

2π
)2
∫ ∞

0
krhdkrh

∫ 2π

0
dφh · eikrhrhcos(φh−θh) · b3D−1DE3 (krh;ω)

=
1

2π

∫ ∞

0
J0(krh · rh)b3D−1DE3 (krh;ω)krhdkrh (16)

=
1

2π

∫ +∞

−∞

1

2
H+

0 (krh · rh)b3D−1DE3 (krh;ω)krhdkrh,

where the H+
0 is the Bessel function of third kind (Hankel function) and q = sgn(ω)

√
ω2

c20
− k2rh.

Considering the computational costs in Hankel transform, we can use the asymptotic Hankel function
to improve the efficiency by FFT. Then the asymptotic Hankel transform is

b3D−1DE3 (rh;ω) =
1

2π

∫ +∞

−∞

1

2

√
2

πkrhrh
b3D−1DE3 (krh;ω)krhdkrh

=
1

2π

∫ +∞

−∞

√
krh

2πrh
b3D−1DE3 (krh;ω)dkrh, (17)

where the offset is defined as rh = |~rg − ~rs|. In a specified acquisition geometry that sources and
receivers are on the same streamer line in 3-D survey, we can make krh = kx, which means, the 3-D
algorithm can be reduced dramatically in k− ω domain. The efficiency of predicting multiples in a
3-D data for a 1-D earth is comparable to processing a 2-D data set.
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Figure 2: Acoustic model for modeling a synthetic 3-D data

4 Numerical tests

In order to evaluate the reduced form of 3-D ISS internal multiple attenuation algorithm (equation
16), we generate a synthetic 3-D data in a two-reflector acoustic medium. Before we start the pre-
diction of internal multiple, here are three prior assumptions. Firstly, the earth is assumed to be a
1-D layered medium. Secondly, the 3-D source is located on the receiver streamer, which means that
there is no crossline offset. In addition, since the synthetic data is generated in (krh, q) domain, we
assume that the 3-D data must be transformed to wave-number-frequency domain correctly. The
transformation from spatial to wave-number domain demands a 2-dimensional Fourier transform or
a Fourier-Bessel transform for a 1-D earth model.

The (a) part in figure 3 shows the 3-D data, which is simulated by a two-reflector model (figure 2).
The internal multiple predictions generated by the 2-D algorithm (Y. Zou, 2014 M-OSRP annual
report) and the reduced 3-D internal multiple algorithms with (equation 17) or without (equation
16) an asymptotic Bessel function are separately shown in (b), (c) and (d). Efficiency of 2-D source-
1-D earth algorithm and 3-D source-1-D earth algorithm are the same when we use an asymptotic
Bessel function in the Hankel transform.

The trace comparisons are shown in figure 4 (near-offset, trace 2) and figure 5 (far-offset, trace 50).
In each figure, there are four different traces involved in the comparison: red line represents the
dataset, black line represents the 3-D prediction that is transformed back to spatial domain by a
Hankel transform (equation 16), green line represents the 3-D prediction with an asymptotic Bessel
function (equation 17), and the blue line represents a 2-D prediction using a Fourier transform.
From these figures, we conclude that even though the prediction is still an attenuator, the shape
of wavelet and approximated amplitude can be preserved by using the reduced 3-D ISS internal
multiple algorithm with or without asymptotic Bessel. Due to the far field approximation, the
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Figure 3: (a) 3-D Data set (one streamer, courtesy of Yanglei Zou); (b) Leading-order internal
multiple prediction using the reduced 3-D algorithm and the inverse Hankel transformation; (c)
Leading-order internal multiple prediction using 2-D algorithm and FFT; (d) Leading-order internal
multiple prediction using the reduced 3-D algorithm and FFT (asymptotic Bessel function).

transform with asymptotic Bessel function fails to generate the same amplitude as an attenuator for
the near-offset prediction. On the other hand, the 2-D algorithm, which use a Fourier transform,
produces a spike wavelet with a tail in prediction and a boosted amplitude. The over-estimated
amplitude of 2-D prediction will damage the primary-events, especially when there is an interference
of primaries and internal multiples in data set.
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5 Conclusions and future work

This report demonstrates the 3-D source and 1-D earth ISS internal multiple attenuator in cylin-
drical coordinates. Attenuating internal multiples without knowing subsurface information is the
greatest strength of ISS subseries algorithm; nevertheless, the adequate full 3-D data is required by
the algorithm. In Cartesian coordinates, even for a 3-D source and 1-D earth, the prediction needs
one source and an areal coverage of receivers. We accommodate the 3-D source-3D earth algorithm
to a reduced 3-D source-1-D earth form under a circular symmetry in cylindrical coordinates, which
allows a single source and receivers on a single line, rather than a full surface of receivers.

The results of 3-D source and 1-D earth b3 will be applied into other stronger but expensive al-
gorithm, such as the high-dimensional ISS internal multiple eliminator that Yanglei Zou and Dr.
Weglein are developing. The elimination of internal multiple is a challenge in the second part of the
three-pronged strategy.
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Figure 4: Trace 2 comparison of the data (red line), the 2-D algorithm prediction (blue line), the
3-D algorithm prediction (black line) the 3-D algorithm prediction with asymptotic Bessel function
(green line). Figure shown on the right top is the enlarged internal multiple event.
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Figure 5: Trace 50 comparison of the data (red line), the 2-D algorithm prediction (blue line), the
3-D algorithm prediction (black line) the 3-D algorithm prediction with asymptotic Bessel function
(green line). Figure shown on the right top is the enlarged internal multiple event.
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Appendix A

A Transformation of integral variables

The transformation from the integrand over the vector ~rg to the other vector ~rh can be obtained by
Jacobian determinant. The definition of two vectors under cylindrical coordinate can be expressed
by ~rg = (rg, θg) and ~rh = (rh, θh). Because of the ~rh = ~rg − ~rs, where the ~rg is the location of
receivers and the ~rs is the location of sources, we have the relation between two vectors:

rh =
√
r2g + r2s − 2rgrscos(θg − θs) (18)

θh = arctan(
rgsinθg − rssinθs
rscosθg − rgcosθs

). (19)

The relation can be represented by a Jacobian determinant,

drhdθh = |J |drgdθg =

∣∣∣∣∣
∂rh
∂rg

∂rh
∂θg

∂θh
∂rg

∂θh
∂θg

∣∣∣∣∣ . (20)

Solve the determinant through the derivative values given by,

∂rh
∂rg

=
rg − rscos(θg − θs)√

r2g − r2s − 2rgrscos(θg − θs)
(21)

∂rh
∂θg

=
rgrssin(θg − θs)√

r2g − r2s − 2rgrscos(θg − θs)
(22)

∂θh
∂rg

=
bsinθg − acosθg

a2 + b2
(23)

∂θh
∂θg

=
brgcosθg − argsinθg

a2 + b2
, (24)

where a = rgsinθg − rssinθs and b = rgcosθg − rscosθs. The J determinant can be calculated as,

|J | = ∂rh
∂rg

∂θh
∂θg
− ∂rh
∂θg

∂θh
∂rg

=
rg
rh
. (25)

We obtain the relation between two integral variables, as

drhdθh = |J |drgdθg (26)
rhdrhdθh = rgdrgdθg. (27)
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B Dirac delta in cylindrical coordinates

Prove the Dirac delta from a general formula,
∫∫

ei(
~kr1− ~kr2)·~r2d~r2 = (2π)2δ(kx1 − kx2)δ(ky1 − ky2). (28)

Convert the Dirac delta on the right side from Cartesian coordinate to cylindrical coordinate, as

δ(kr1 − kr2)δ(φ1 − φ2) = |∂(kx1, ky1)

∂(φ1 − φ2)
|δ(kx1 − kx2)δ(ky1 − ky2) (29)

δ(kr1 − kr2)δ(φ1 − φ2) =

∣∣∣∣
cosφ1 sinφ1

−kr1sinφ1 kr1cosφ1

∣∣∣∣ δ(kx1 − kx2)δ(ky1 − ky2) (30)

δ(kr1 − kr2)δ(φ1 − φ2)
kr1

= δ(kx1 − kx2)δ(ky1 − ky2). (31)

The 2-dimensional Fourier transform over a constant can give us
∫∫

ei(
~kr1− ~kr2)·~r2d~r2 = (2π)2

δ(kr1 − kr2)δ(φ1 − φ2)
kr1

. (32)
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attenuation algorithm for an attenuating medium
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Abstract

In this paper, the Inverse Scattering Series (ISS) internal multiple attenuation algorithm is
analytically and numerically evaluated on reflection data from an attenuating medium. All
previous synthetic data tests on this algorithm have involved multidimensional acoustic and
elastic media. The results for an attenuating medium show that the method retains its value
to directly predict internal multiples (IM) with the exact phase and an approximate amplitude,
without knowing the medium and its anelastic properties.

1 Introduction

The inverse scattering series can achieve all processing objectives directly by using distinct isolated
task-specific subseries and without subsurface information (Weglein et al. (2003)). The ISS internal
multiple attenuator has shown stand-alone capabilities on both marine and on-shore plays (e.g.,
Ferreira, 2011; Fu et al., 2010). To extend the attenuation method to elimination, Zou and We-
glein (2013) propose a new algorithm to compensate for transmission loss in the attenuator. This
new elimination method requires the input data to be wavelet deconvolved and assumes an elastic
subsurface. Obviously, if the data are attenuated and broadened because of their propagation in
an anelastic medium, Q compensation is the conventional step to recover the amplitudes before
substituting the data into ISS internal multiple elimination algorithm. That can be a difficult step
to effectively achieve in practice, because: (1) it requires an accurate knowledge of the attenuation
factor Q, and (2) the method is sensitive to small errors in the estimated Q.

An alternative approach, Q compensation based on the ISS without Q information of the subsurface
has demonstrated an early but encouraging effectiveness (e.g., Innanen and Weglein, 2003; 2005;
Innanen and Lira, 2008). The current ISS Q compensation without Q method assumes that the
input data contain primaries only, i.e., that the internal multiples have been attenuated or eliminated
for best before stepping into Q compensation algorithm.
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This paper demonstrates that applying the industry standard ISS internal multiple attenuator to
data from an anelastic earth will attenuate the multiples. The data with primary and relatively
weak residual internal multiple can be substituted into the ISS Q compensation algorithm to obtain
effective elastic data and then insert that data into the new elastic internal multiple elimination
algorithm.

In this paper, for the first time the ISS internal multiple attenuator is tested on data from an
attenuating medium. A two-reflector model with constant Q in each layer is used for analytical and
numerical testing and evaluation. The result indicates that the prediction has the correct phase
and an approximate amplitude. That is positive news for the ISS internal multiple attenuator
and encourages developing an elimination method for the exploration plays where absorption is
significant, e.g., pre-salt plays in the deep water Gulf of Mexico, off-shore Brazil, the Red Sea and
the North Sea.

2 Analytical Test of ISS Internal Multiple Attenuation Algorithm on Data
with Q

2.1 Wavefield expression for an attenuating medium

Based on Aki and Richards (2002), assuming a constant Q model, the 1D wave equation can be
written as

d2P

dx2
+
ω2

c20

(
1 +

F (ω)

Q

)2

P = 0, (1)

where
F (ω) =

i

2
sgn(ω)− 1

π
log(| ω

ωr
|)

; it’s constitute of two terms: the first term is related to the energy attenuation, and the second
term is related to velocity dispersion. ωr here is the reference frequency, and it could be chosen as
the maximum frequency in the experiment; c0 is the constant velocity at the reference frequency.

Q here is used to represent the energy loss for a wave-field propagating, in one wave length, and is
defined as

Q =
2πE

∆E
, (2)

where E is the energy of the wave-field, and ∆E is the energy loss in a wavelength of propagation.

If we define a frequency dependent velocity c(ω) as

1

c(ω)
=

1

c0

(
1 +

F (ω)

Q

)
, (3)

then the wavefield P (x, ω) can be expressed as
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P (x, ω) = e
i ω
c(ω)

x
= e

i ω
c0
x
e
−ω sgn(ω)

2c0Q
x
e
−i ω

c0πQ
log(| ω

ωr
|)x
. (4)

From the formula, we understand the wavefield is influenced by three terms: the first term is
contributing to the phase with the velocity of c0, the second term is contributing to the energy
attenuation, and the third term is contributing to the phase delay with velocity dispersion. Only
the first term is left when Q is increased to infinity; i.e, the medium is back to elastic.

2.2 Analytical Test Under 1D Normal Incidence

Following the explanation in the previous section, we can express the wave-field in an anelastic
medium analytically. In this section, the anelastic data will be used as input to test the ISS internal
multiple attenuation algorithm analytically.

For 1D normal incidence, the ISS internal multiple attenuation algorithm (e.g., Araújo, 1994; We-
glein et al., 1997; 2003) can be expressed as:

b3(kz) =

∫ ∞

−∞
b1(z)e

ikzzdz

∫ z−ε

−∞
b1(z1)e

−ikzz1dz1

∫ ∞

z1+ε
b1(z2)e

ikzz2dz2, (5)

where the deghosted data, D(t), for an incident spike wave, satisfies D(ω) = b1(2ω/c0), and
b1(z) =

∫∞
−∞ b1(kz)e

−ikzzdkz, kz = 2ω/c0 is the vertical wavenumber, and b1(z) corresponds to
an uncollapsed FK migration of the normal-incident spike plane-wave data. ε in the formula is used
to make sure the events satisfy the lower-higher-lower relationship, and its value is chosen on the
basis of the length of the wavelet.

A two-reflector model is provided below as an example, with the parameters listed in Fig.1, and
with the depths of source and receiver both assumed to be zero.

For a 1D model and a 1D normal-incident plane wave, two primaries in the data D(ω) can be
represented as:

P (1)(ω) = R1(ω)e
i ω
c1(ω)

2z1 ,

P (2)(ω) = T 12(ω)T 21(ω)R2(ω)e
i ω
c1(ω)

2z1e
i ω
c2(ω)

2(z2−z1),
(6)

where 1
c1(ω)

= 1
c1

(
1 + F (ω)

Q1

)
and 1

c2(ω)
= 1

c2

(
1 + F (ω)

Q2

)
, the velocities in both layers are frequency

dependent. And the primaries are both suffered from the absorption.

After migrating the data into the pseudo depth domain to get b1(z), we can substitute it into eqn.4.
We further assume that the two primaries in b1(z) are isolated and ε is chosen reasonably to make
sure there is no overlap between the two events among the integrals. The predicted internal multiple
b3(kz) can be obtained:
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Figure 1: A two-reflector 1D model. P (1) and P (2) are primaries from the first and the second
interface, respectively; R1 and R2 are reflection coefficients; T12 and T21 are transmission coefficients;
c1 and c2 are the velocities; ρ1 and ρ2 are densities; and Q1 and Q2 are quality factors.

b3(kz) = (T 12(kz)T 21(kz)R2(kz))
2R1

∗(kz)e
− |kz |
Q1

z1e
ikz

(
1+

F (kz)
Q1

)
z1e

i2kz
c1
c2

(
1+

F (kz)
Q2

)
(z2−z1), (7)

where F (kz) = i
2 sgn (kz)− 1

π log(| kzkzr |), and kzr = 2ωr/c1.

The actual first-order internal multiple in the kz domain is

IM(kz) = −T12(kz)T21(kz)(R2(kz))
2R1(kz)e

ikz
(
1+

F (kz)
Q1

)
z1e

i2kz
c1
c2

(
1+

F (kz)
Q2

)
(z2−z1). (8)

The relation between the predicted internal multiple and the actual internal multiple is

b3(kz) = −T12(kz)T21(kz)
R1
∗(kz)

R1(kz)
e
− |kz |
Q1

z1IM(kz). (9)

In this formula, the phase related to the product between the transmission and reflection coefficients
can be neglected, since it’s too small to make effective contribution, and the later numerical results
can further confirm this view point.

Until now, we understand that, by using the ISS internal multiple attenuation algorithm, the mul-
tiple can be predicted with the correct phase and an approximate amplitude.

If the data are without the influence of Q absorption, i.e., Q is increasing to infinity and the medium
is acoustic/elastic, then from Weglein et al. (2003), we can obtain the relation between predicted
and actual internal multiple as

b3(kz) = −T12T21IM(kz). (10)
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Comparing equation 9 and equation 10, it can be seen that the predicted amplitude is less accurate
for input data with Q absorption than it is for data without Q; however, still the correct phase under
both situations. Actually, for the elastic medium, the transmission coefficients on the interfaces that
are above and at the multiple generator are over predicted and the first interface is the multiple
generator for this model; however, for the anelastic medium, besides the transmission coefficients on
those related interfaces, the energy attenuation caused by absorption in the layers that are above
the multiple generator is also over estimated and only the first layer is above the multiple generator
for this model. This is reasonable, since for the attenuating medium, both the layer and interface
will make contribution to the transmission loss.

3 Numerical Test of ISS Internal Multiple Attenuation Algorithm
on Data with Q

Two two-reflector 1D models (Fig.1) will be used as examples to numerically test the effectiveness
of ISS internal multiple attenuator on anelastic data.

For the first model, the parameters are listed in Fig.2(a). We know from the Q values that the
wavefield will experience light absorption during the propagation, and the events will still be very
narrow. The synthetic data with the parameters are generated with two primaries and one first-order
internal multiple which is encountering downward reflection at the first interface.

Substituting the input data b1, shown as the blue line in Fig.2(b), into ISS internal multiple atten-
uation algorithm, we can predict internal multiple b3, shown as the red line in Fig.2(b). Actually,
the red line in Fig.2(b) is -b3. It can be seen from equation 9 that the polarity of b3 is opposite to
that of the actual internal multiple. In order to show the result more clearly, the predicted internal
multiple and the actual internal multiple are compared in Fig.2(c). From the result, we further
confirm that the prediction result matches well in phase and approximately in amplitude even with
data from an attenuating medium, without knowing absorptive and dispersive properties.

For the second model, the parameters are listed in Fig.3(a). Here we only decrease Q in the second
layer to be a very small value, and keep the other parameters to be the same as the first model.
With such a small Q in the second layer, the primaries from the second interface and the internal
multiple propagating two cycles in the second layer will suffer seriously from the absorption. This
can be seen from the blue line in Fig.3(b), representing the input data b1. Even with significant
energy attenuation and velocity dispersion, the prediction result from the ISS attenuator is still
satisfied, which can be clearly confirmed from Fig.3(c), the comparison between the predicted and
actual internal multiple.

4 Discussion

In this paper, the ISS internal multiple attenuation algorithm is tested analytically and numerically
using Q-influenced data, with the conclusion that the prediction will have the correct phase and an
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approximate amplitude.

The discussion in this paper gives us confidence that even for an attenuating medium, the ISS
internal multiple attenuator can provide a result that retains the primary and partially removes
the internal multiple. This is an important step in a strategy to eliminate internal multiples for
both elastic and anelastic media. That will allow application for exploration plays where the geology
exhibits significant absorption, e.g., pre-salt plays in the deep water Gulf of Mexico, off-shore Brazil,
the Red Sea and the North Sea.
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(a)

(b)

(c)

Figure 2: The numerical result of ISS internal multiple attenuation algorithm with anelastic data.
(a) the parameters for the first model; (b): the input data b1 (blue line) and the predicted multiple
-b3 (red line); (c): the actual internal multiple (blue line) and the predicted internal multiple -b3
(red line).
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(a)

(b)

(c)

Figure 3: The numerical result of ISS internal multiple attenuation algorithm with anelastic data.
(a) the parameters for the second model; (b): the input data b1 (blue line) and the predicted multiple
-b3 (red line); (c): the actual internal multiple (blue line) and the predicted internal multiple -b3
(red line).
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Appendix

A B3 Calculation

The primaries in frequency domain can be expressed from equation 6. Since the migrated data in
pseudo depth domain are required to substitute into the internal multiple attenuation algorithm,
the variable should be changed from ω to kz = 2ω

c1
:

P (1)(kz) = R1(kz)e
ikz

(
1+

F (kz)
Q1

)
z1 ,

P (2)(kz) = T 12(kz)T 21(kz)R2(kz)e
ikz

(
1+

F (kz)
Q1

)
z1e

ikz
c1
c2

(
1+

F (kz)
Q2

)
(z2−z1).

(11)

We obtain b1(kz) = P (1)(kz) + P (2)(kz).

Then, Fourier transform is applied over kz to pseudo depth domain to obtain

b1(z) = P (1)(z) + P (2)(z), (12)

which will be substituted into ISS internal multiple attenuation algorithm to predict the internal
multiple b3(kz).

Based on Weglein et al. (2003), the 1D ISS internal multiple attenuation algorithm is

b3(kz) =

∫ ∞

−∞
b1(z)e

ikzzdz

∫ z−ε

−∞
b1(z1)e

−ikzz1dz1

∫ ∞

z1+ε
b1(z2)e

ikzz2dz2, (13)

where ε is used to make sure the events satisfy the lower-higher-lower relationship, and its value is
chosen on the basis of the length of the wavelet.

For this model, there are two primaries in the data. Now we assume that these two events are
isolated (Fig.4). The pseudo depth of the first event is z′1 with a length of 2a, whereas the pseudo
depth of the second event is z′2 with a length of 2b. For ε in equation 13 , it is chosen to satisfy
ε ≥ max(2a, 2b) and ε ≤ (z′2 − b− (z′1 + a)).

Kaplan et al. (2004) change the integral order of equation 13 and rewrite the formula as:

b3(kz) =

∫ ∞

−∞
b1(z)e

−ikzz[
∫ ∞

z+ε
b1(z

′)eikzz
′
dz′]2dz. (14)

Since b1(z) = P (1)(z) + P (2)(z), equation 14 can be divided into two parts:
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Figure 4: A two-reflector 1D model. P (1) and P (2) are primaries from the first and the second
interface, respectively; R1 and R2 are reflection coefficients; T12 and T21 are transmission coefficients;
c1 and c2 are the velocities; ρ1 and ρ2 are densities; and Q1 and Q2 are quality factors.

b3(kz)

=

∫ ∞

−∞
P (1)(z)e−ikzz[

∫ ∞

z+ε
b1(z

′)eikzz
′
dz′]2dz

+

∫ ∞

−∞
P (2)(z)e−ikzz[

∫ ∞

z+ε
b1(z

′)eikzz
′
dz′]2dz

=

∫ z′1+a

z′1−a
P (1)(z)e−ikzz[

∫ ∞

z+ε
b1(z

′)eikzz
′
dz′]2dz (15.1)

+

∫ z′2+b

z′2−b
P (2)(z)e−ikzz[

∫ ∞

z+ε
b1(z

′)eikzz
′
dz′]2dz. (15.2)

For (15.1), the integral limitation of z is [z′1 − a, z′1 + a]. Consider the lower limit of the integral of
z’ and the constraint of ε,
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z + ε ≥ z′1 − a+ ε ≥ z′1 + a+ 2a = z′1 + a,

and

z + ε ≤ z′1 + a+ ε ≤ z′1 + a+ z′2 − b− (z′1 + a) = z′2 − b.
We can see that the lower limit of the second integral should be after the end of the first event
and before the beginning of the second event, i.e., in [z + ε,∞), the kernel of the second integral is
b1(z

′) = P (2)(z′).

So

(15.1)

=

∫ z′1+a

z′1−a
P (1)(z)e−ikzz[

∫ ∞

z+ε
b1(z

′)eikzz
′
dz′]2dz

=

∫ z′1+a

z′1−a
P (1)(z)e−ikzz[

∫ ∞

z+ε
P (2)(z′)eikzz

′
dz′]2dz

=

∫ ∞

−∞
P (1)(z)e−ikzz[

∫ ∞

−∞
P (2)(z′)eikzz

′
dz′]2dz

=(T 12(kz)T 21(kz)R2(kz))
2R1

∗(kz)e
− |kz |
Q1

z1e
ikz

(
1+

F (kz)
Q1

)
z1e

i2kz
c1
c2

(
1+

F (kz)
Q2

)
(z2−z1).

Similarly, for (15.2), the integral limitation of z is [z′2 − b, z′2 + b]. Consider the lower limit of the
integral of z’ and the constraint of ε,

z + ε ≥ z′2 − b+ ε ≥ z′2 + b+ 2b = z′2 + b.

The lower limit of the second integral should be after the end of the second event, i.e., in [z+ ε,∞),
the kernel the of second integral is b1(z′) = 0.

So

(15.2)

=

∫ z′2+b

z′2−b
P (2)(z)e−ikzz[

∫ ∞

z+ε
b1(z

′)eikzz
′
dz′]2dz

=0.

Now

b3(kz)

=(15.1)

=(T 12(kz)T 21(kz)R2(kz))
2R1

∗(kz)e
− |kz |
Q1

z1e
ikz

(
1+

F (kz)
Q1

)
z1e

i2kz
c1
c2

(
1+

F (kz)
Q2

)
(z2−z1).
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Abstract

The leading-order ISS internal-multiple-attenuation algorithm computes the exact time and
the approximate amplitude of internal multiples using a compute-intensive algorithm. This
algorithm plus adaptive subtraction might be effective enough for areas with few strong reflectors
— e.g., the deep-water Gulf of Mexico. However, areas with many strong reflectors, where most
primaries have an adjacent or overlying internal multiple — e.g., Saudi Arabia and western
Canada — need additional accuracy in computing amplitudes. This accuracy can be provided
by removing so-called “spurious” predictions and by completely eliminating internal multiples
by using the respective ISS algorithms. An approach to estimating the compute requirements
of this additional capability is discussed and compared with the compute requirements of the
leading-order ISS internal-multiple-attenuation algorithm.

1 Introduction

M-OSRP algorithms for depth imaging and inversion for properties across subsurface boundaries
assume that only primaries from the measured wavefield, P , are used as input — i.e., that the
reference wavefield, P0, ghosts, and multiples have been removed from P . The leading-order ISS
internal-multiple-attenuation algorithm (Araújo, 1994; Weglein et al., 1997) computes the exact time
and the approximate amplitude of internal multiples by using a compute-intensive algorithm. New
algorithms to converge on the exact amplitude are expected to be even more compute-intensive.
The compute requirements of the leading-order ISS internal-multiple-attenuation algorithm are
estimated in Kaplan et al. (2005). We report first-pass estimates of the compute requirements for
the new algorithms.

An infinite series is required to compute both the exact time and the exact amplitude of internal
multiples embedded in seismic data. The leading-order ISS internal-multiple-attenuation algorithm
is the first term in that series (hence the term “leading order” in its description). Approximate
amplitudes are computed because higher-order terms (beyond first order) are not present.
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The new algorithms take two approaches to the missing higher-order terms. (1) The ISS higher-
order internal-multiple-attenuation algorithm removes the spurious predictions (normally eliminated
by higher-order terms) by taking the output of the leading-order ISS internal-multiple-attenuation
algorithm and using it as part of the input to another calculation by the leading-order ISS internal-
multiple-attenuation algorithm. (2) The internal-multiple-elimination algorithm solves an integral
equation by iteration. The advantage of approach 2 is that, as is the case with the free-surface-
multiple algorithm, it can use as many terms as are needed to eliminate all orders of internal
multiples that are present in P .

2 What are internal multiples?

In a marine experiment, an air-gun array (towed by a survey boat) periodically releases compressed
air underwater to create intense sound waves. The sound waves reflect from the ocean surface, ocean
bottom, and boundaries between underground rock layers. Reflected sound waves are recorded by
underwater microphones (hydrophones), which are also towed by the survey boat.1 The recorded
sound waves are processed to infer information about the structure and properties of the under-
ground rock layers. One component of the recorded sound waves (internal multiples) is computed
and removed from the recorded sound waves.

M-OSRP processing of marine seismic data includes the following steps. (1) The total pressure
wavefield P measured by the hydrophones is considered to be the sum of a reference pressure
wavefield P0 and a scattered pressure wavefield Ps, which is P − P0. All events that are reflected
from the Earth are in the measured values of the scattered wave, Ps. (2) After P0 is removed, M-
OSRP defines ghosts. Ghosts are the events in Ps that begin their propagation by moving upward
from the source (source ghosts) or end their propagation by moving downward to the receiver
(receiver ghosts) or both (source-receiver ghosts) and that have at least one upward reflection from
the Earth. (3) After the reference wavefield and all ghosts have been removed, M-OSRP defines
multiples and primaries. Free-surface multiples have at least one downward reflection from the
air-water boundary and at least one upward reflection from the Earth. Internal multiples have
no downward reflections from the air-water boundary, have more than one upward reflection from
the Earth, and at have least one downward reflection from inside the Earth. An nth-order free-
surface multiple has n downward reflections from the air-water boundary, and an nth-order internal
multiple has n downward reflections from reflector(s) inside the Earth. Primaries have only one
upward reflection from the Earth and no other reflections.

3 Why are internal multiples so compute intensive?

An internal multiple can be pictured as one or more W’s.2 Sound moves down, is reflected upward,
then downward, then upward, and so on. We don’t know a priori where the reflections take place, so

1The towed streamers may also include geophones or accelerometers.
2Similarly, a primary can be pictured as a V.
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the algorithm combs through the recorded data looking for upward and downward reflections at all
possible depths (with the restriction that downward reflections are at shallower depths than upward
reflections are). Kaplan et al. (2005) and Perrone (2007) performed the early work estimating
compute requirements for the internal-multiple-attenuation algorithm. This algorithm is but the
first term in a subseries; hence, it requires modification. Ma and Weglein (2014) are improving the
algorithm to suppress so-called “spurious” events. Zou and Weglein (2014a;b;c) are improving the
algorithm to more accurately compute amplitudes of internal multiples. However, each improvement
in accuracy increases the algorithmic complexity and compute time.

4 Why improve the internal multiple algorithm?

M-OSRP’s toolbox approach recognizes that each method for attenuating multiples has strengths
and limitations and that, for a given prospect and play, one chooses the appropriate method from a
cost-effectiveness perspective (Weglein, 2013). The petroleum industry’s current worldwide portfolio
of both conventional and unconventional onshore plays, and of increasingly complex offshore plays
— with new and unforeseen, daunting challenges — has returned and rejuvenated an interest in
multiple removal (and has stimulated a demand for substantially increased effectiveness). Multiple
removal has come back to center stage, both for our sponsors and concomitantly as a key and
fundamental research project (once again) for M-OSRP (Weglein, 2014). To adequately address the
current industry challenge, we will need to be able to predict exactly the phase and amplitude of all
internal multiples and thereby to surgically remove (eliminate) the multiples at all offsets, directly,
and without subsurface information (Weglein, 2014).

For example, in the deep-water Gulf of Mexico, an area with few strong reflectors, the 3D internal-
multiple-attenuation algorithm plus adaptive subtraction might be enough. However, in Saudi
Arabia and western Canada, where there are many strong reflectors and most primaries have an
adjacent or overlying internal multiple, spurious predictions must be removed and internal multiples
must be completely eliminated. If we can not separate primaries and multiples, how can we do AVO
analysis?

5 Compute requirements of the Inverse-Scattering-Series (ISS) higher-order
internal-multiple-attenuation algorithm to accommodate primaries and in-
ternal multiples as input

The current leading-order Inverse-Scattering-Series internal-multiple-attenuation algorithm (Araújo,
1994; Weglein et al., 1997) is among the most compute-intensive processes in seismic exploration.
Its computational costs and optimization on large distributed systems are reported in Kaplan et al.
(2005) and Terenghi (2011). The new higher-order ISS internal-multiple-attenuation algorithm
accommodates the input data containing both primaries and internal multiples and addresses the so-
called “spurious” predictions that the current leading-order algorithm can produce. In the following,
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we will provide a brief summary of the computational requirements of the new higher-order algorithm
compared with that of the current leading-order algorithm.

In two dimensions, the current leading-order ISS internal-multiple-attenuation algorithm is (Weglein
et al., 2003; Kaplan et al., 2005)

b3IM (kg,ks, ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
b1(k1, k2, z1)e

−i(k1z+k2z)z1

[∫ ∞

z1+ε
b1(kg, k1, z2)e

i(kgz+k1z)z2dz2

] [∫ ∞

z1+ε
b1(kg, k1, z2)e

i(k2z+ksz)z2dz2

]
dz1dk1dk2. (1)

The proposed higher-order algorithms to address spurious predictions are (Ma et al., 2011; Liang
et al., 2011)
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]
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and
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(2π)2
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∫ ∞

−∞

∫ ∞

−∞
b1(k1, k2, z1)e

−i(k1z+k2z)z1
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] [∫ ∞

z1+ε
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]
dz1dk1dk2. (3)

Equations 2 and 3 show that the output of the leading-order algorithm, Equation 1, acts as one of
the integrands in the higher-order algorithm.

Following the calculations in Kaplan et al. (2005), we estimate the required floating-point operations.
For example, for a 2D data set with 100 shots, 100 receivers, 1000 pseudo-depth points, 1000 output
frequencies, and a sampling interval in time of 0.001 s,3 the data set requires about 3×1015 floating-
point operations for both the leading-order algorithm and the higher-order term in equation 2. It is
worth pointing out that the higher-order term, Equation 2, cannot be calculated until the required
value for b3(kg, ks, z) is made available by Equation 1. The same calculation applies for the other
higher-order term, Equation 3. For a 3D data set, using the same parameters as in the 2D example
(i.e., 100 shots, 100 receivers, etc.), the floating-point operations number approximately 1023 for
the current leading-order algorithm, Equation 1. Calculation of Equations 2 and 3 will triple the
required number of floating-point operations.

3Note, however, that this example is a tiny fraction of a typical modern seismic survey (thousands of shots each
with hundreds of receivers generating terabytes of data).

166



Multiples: part II M-OSRP13-14

6 Compute requirements of the internal-multiple-elimination algorithm that
is based on the ISS

The ISS internal-multiple-attenuation algorithm is a compute-intensive algorithm. However, it is an
attenuation algorithm. In order to completely remove all internal multiples, especially when internal
multiples are proximal to and/or interfering with primaries, M-OSRP proposes a three-pronged
strategy (please refer to Weglein, 2014) for providing an effective response to this pressing and
prioritized challenge. One part of the strategy is to find an elimination algorithm, which probably
needs more compute power than the attenuation algorithm. A straight-forward implementation of
the recently developed elimination algorithm for 1D pre-stack data (please refer to Zou and Weglein,
2014a;b;c) needs approximately 10-30 times more floating-point operations than the attenuation
algorithm requires. The need for more floating-point operations is mainly due to the small integrals
that represent the self-interactions; that is, if you include more points in the small integrals, the
algorithm will need more floating-point operations, and vice versa.

The elimination algorithms under 2D and 3D are currently in development. These algorithms
probably need more floating-point operations than the attenuation algorithm does. A rough guess
is that they can be hundreds of times more compute-intensive than the attenuation algorithm is.
Meanwhile, we note that for the same algorithm, different methods of implementation may need
quite different numbers of floating-point operations.

7 Additional remarks on testing

Generally, there are two approaches to evaluating the cost of our algorithms: static analysis and
dynamic analysis. Static analysis is the analysis of implementing the algorithm (computer program),
without actually executing the program. We can count all computational operations required in
the program (FLOPS) during its implementation and compare that with capability of our target
(hardware and software). Dynamic analysis is performed by executing programs on a real or virtual
target environment. In a modern high-performance computation environment, the bottleneck of
performance usually is not the capability of computational operations (FLOPS) itself but is instead
the data-transfer bandwidth between CPU and memory. The data-transfer time is not ignorable
when we consider the total run time of a program. Furthermore, memory access (to obtain a
high cache-hit ratio) is critical to improving performance. The aspect of data transfer is relatively
difficult to evaluate in static analysis (by only counting memory access), so a dynamic analysis is
preferable in our situation. Because some of our algorithms are currently in the development stage,
their final implementation is not available. This, one way to evaluate their actual costs is to make
model programs that simulate the same logic structure, number of operations and memory access
strategy and then to test those model programs on a real or virtual target environment.
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7.1 Computational cost (measured by floating-point operations) required by
current implementation of the 2D ISS internal-multiple-attenuation algo-
rithm

In the current implementation of the 2D ISS internal-multiple-attenuation algorithm, the whole
procedure is divided into two steps (modules): (1) obtaining the b1 term from the data and (2)
calculating the b3 term (predicted internal multiples) from the b1 term. The first step (module) is
actually a constant-velocity Stolt migration, whose computational cost is negligible compared with
that of the second step. Thus, we consider the cost of only the second step: the prediction.

In the second module, there are also some auxiliary jobs, such as data-file input/output, mem-
ory allocation/freeing, reading/calculation of parameters, data sorting/regularization, fast Fourier
transform/inverse fast Fourier transform, error checking, etc. We will ignore the cost of these
auxiliary jobs, and will concentrate on the kernel of the prediction.

The pseudo code for the kernel of the ISS internal-multiple prediction and FLoating-point Opera-
tions (FLOs) estimation is

f o r a l l ks
f o r a l l kg

some preparat i on jobs ( about 30 FLOs)
f o r a l l f r e qu en c i e s ( omega )

f o r a l l k2
f o r a l l k1

some preparat i on jobs ( about 130 FLOs)
f o r a l l z2

c a l c u l a t i n g the i n i t i a l va lue s o f the exponent i a l f a c t o r s
and the increments o f the exponent i a l f a c t o r s ( about

150 FLOs)
f o r a l l z1

c a l c u l a t i n g the p r ed i c t i on and accumulating the
exponent i a l f a c t o r s ( about 40 FLOs)

f o r a l l z3
c a l c u l a t i n g the p r ed i c t i on and accumulating the

exponent i a l f a c t o r s ( about 40 FLOs)
s h i f t the output to output depth ( about 30 FLOs)

Note:

1. The FLOs comprise an approximate estimate based on source code only; the actual FLOs
of the binary executable will depend on the compiler optimization in the binary executable
generation.

2. The number of iterations for all loops are the upper limit. In some cases (e.g., the evanescent
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part in the wavenumber/frequency domain), the iterations executed for each loop may be
fewer than the upper limit.

3. It is assumed that some complicated math functions (such as real square root, complex expo-
nential) take 10 FLOs, that complex addition and subtraction take 2 FLOs, and that complex
multiplication and division take 6 FLOs. The actual costs of these functions will depend on
the implementation of the math library.

4. All FLOs estimates for each step are rounded to the nearest ten.

Thus, the total cost for the kernel will be

FLOs = nks× nkg × (30 + nw × nk2× nk1× (130 + nz2× (150 + nz1× 40 + nz3× 40 + 30))).
(4)

This FLOs calculation is an estimate of the order of magnitude (rather than an accurate number)
of the floating-point operations that we need for the ISS internal-multiple-prediction kernel.

Here we estimate the computational cost by the number of FLOs. However, it is not a linear
conversion to determine runtime by multiplying FLOs by a constant factor such as the FLoating-
point Operations Per Second (FLOPS) of a certain machine. As we mentioned above, the memory-
access time and cache-hit ratio will play important roles for the total runtime. Such an estimate of
the number of FLOs is intended to help us understand the scale of the computational cost of the ISS
internal-multiple-attenuation problem, rather than to evaluate the actual runtime or performance
of the ISS internal-multiple-attenuation code.

7.2 Estimating computational cost for a specific 2D marine-field-data set

Now, let us evaluate the FLOs for a 2D marine-field-data set. Some parameters of the geometry or
size of the data set are given in the following table.

Parameter Value
Number of shots 374

Number of traces per shot 960
Shot interval 32 m
Trace interval 12.5 m

Number of time samples per trace 3585
Time sampling 4 ms

Maximum measured frequency assume 100 Hz

The 2D ISS attenuation algorithm requires “full coverage” geometry in the input data set. The
algorithm requires that all sources and receivers be located on the same surface grid with an equal
number of sources and receivers. For the above 2D marine-field-data set, given the fact that the
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shot interval is 32 m but the receiver interval is 12.5 m, we need to interpolate to get more source
stations. To obtain a good result and to avoid the boundary effect of the data set, we need padding
on the data set in both space directions and also in the time direction. This is to avoid the boundary
effect and aliasing in the wavenumber domain. The padding factor is a parameter that depends on
the data set on a case-by-case basis.

These two aspects (regularization and padding) make the actual input data set bigger than the
original data set. Here we assume that we have 1700 stations after the regularization and that we
will do 1.5 times padding; the data set then will be 2550×2550 traces (compared with 374×960 traces
before regularization and padding). The data will occupy 2550×2550× (3585×4+240)×2 ≈= 200
GB in memory. We understand that this amount of memory per node is commonly available in
modern compute clusters.

Now we can use equation 4 to get the order of magnitude of the floating-point operations necessary
for this 2D marine-field-data set. Here we assume that for each trace we have the prediction result
that is as long as the input data (3585 samples), and we do not know the depth range of the
multiple generators (nz1=nz2=nz3=3585). All wavenumber samples are equal to the conjugate
spatial samples (nks=nkg=nk1=nk2=2550), hence we get

FLOs = nks× nkg × (30 + nw × nk2× nk1× (130 + nz2× (150 + nz1× 40 + nz3× 40 + 30)))

= 2550× 2550× (30 + 3585× 2550× 2550× (130 + 3585× (150 + 3585× 40 + 3585× 40 + 30)))

= 1.6× 1026,

which is larger than the above synthetic example by a factor of approximately 5× 1010.

8 Conclusions

The compute requirements of the ISS internal-multiple-attenuation algorithm are estimated in Ka-
plan et al. (2005). We update the estimate for a 2D marine-field-data set.
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Short note: Inverse Scattering series direct depth imaging without the velocity
model: test on the Marmousi model

Fang Liu and Arthur B. Weglein

May 21, 2014

Abstract

This short note presents the recent inverse scattering series seismic imaging efforts of M-
OSRP on the well-known Marmousi model. The α1 results (similar to FK migration with fixed
angle ph) and our current higher-order imaging subseries (HOIS) results are shown. Further
experiments are in progress.

1 The Marmousi model and our finite-difference modeling procedure

The Marmousi model is one of the well know benchmark seismic imaging challenges. The original
model is sampled every 1.25(m) in both the vertical and the horizontal directions. In the modeling
procedure we resample it at 5(m) and boost the wave speed of a low velocity region to water velocity
(1500m/s) to accommodate the coarser 5(m) sampling. In the framework set up in Weglein et al.
(2000; 2002), α1 is the first term in the seismic imaging subseries and is essentially equivalent to
a prestack Stolt migration with constant velocity. In this note, α1 (the first term of ISS) and
the subsequent higher-order imaging subseries are shown. For this model with very big velocity
contrast (the highest velocity being 4700m/s vs the reference 1500m/s water speed) and large
lateral variation, the idea of purposeful perturbation (see Weglein (2006) for detail) observed in all
previous simpler imaging challenges still holds for the much more complicated Marmousi model.

There are hundreds of reflectors (horizons) in the Marmousi model, to display all of them at the
same time will block a significant portion of the data. Therefore in each figure we selected only the
major reflectors for display.

The original Marmousi model (see Fig. (1)) has a small region of very low velocity. Since the
wavelength of seismic wave is shorter in the low velocity zone, the extreme low velocity requires
very fine sampling in both the x and z directions. Since this low velocity zone is located in the
portion of the model with very mild lateral variation, the low velocity contrast by itself (without
large lateral variation) was not a major challenge for HOIS. This modification (shown in Fig. (2))
does not reduce the imaging challenge for our ISS imaging.
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Figure 1: The original Marmousi model. The wave speed of the low velocity region in this model
(shown by the bright zone with x-coordinate between −6000(m) and −5000(m)) will be boosted to
water speed (1500m/s). The colored horizons are major reflectors in the model.

Figure 2: The modified Marmousi model. The modification happened between x = −6000m and
x = −5000m where the lateral variation is mild. The low velocity values are boosted to water speed
(1500m/s). The colored horizons are major reflectors in the model.

In the finite difference modeling procedure, the interval between two adjacent time step is 0.5ms,
but the sampling interval in the output is 2ms to follow the standard choice in seismic data. A
typical shot gather is shown in Fig. (3). In the modeling procedure, only the P-wave velocity is
used.

2 ISS imaging results

The physical meaning of the angle θ in this note is as follows: if kh is the wavenumber conjugate to
offset xh = xg − xs, and we define kh = ωph, then θ is associated with kh and ph in the following
relagtionship:

kh = ωph = ω
sin θ

c0
, (1)

where c0 is the reference velocity (in our case a constant with value 1500m/s).
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Figure 3: The shot gather with xs = 0(m).
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Figure 4: The α1 imaging result (equivalent with FK migration with ph = 0 or kh = 0). The detail
can be found in equation (2.22) of Liu (2006).

Figure 5: The HOIS imaging result after the calculation of α1 in Fig. (4). The formula to compute
this term can be found in equation (2.34) of Liu (2006).

α1 is only the first term in the seismic imaging series. Its subsequent step HOIS does not include
ISS imaging terms exclusively required for lateral variations in the medium. Diffractions are a
phenomena that requires a laterally variable subsurface. Therefore there are diffractions in the final
HOIS result.

3 Conclusions

The initial test of the ISS imaging subseries on the Marmousi model is very encouraging: a constant
water speed migration is input to the closed form HOIS algorithm. The HOIS image has most of
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Figure 6: HOIS imaging result for angle θ = 9◦.

Figure 7: HOIS imaging result for angle θ = 4.5◦.

the reflectors very close their actual location. HOIS represents only a small fraction of ISS imaging
terms. Therefore further ISS terms, especially HOIS+LE will add further imaging capability and
the laterally exclusive term in α23 will be studied and evaluated to incorporate and capture new
imaging capability. The latter study is on going with Dr. Zhiqiang Wang, and will be subject of
future communication.
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Figure 8: The sum of all HOIS imaging results from all 101 angles between θ = 0◦ and θ = 9◦.
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Figure 9: Angle gathers, from left to right: alpha1 at xs = −5000(m), HOIS at xs = −5000(m);
alpha1 at xs = −3000(m), HOIS at xs = −3000(m); alpha1 at xs = −1000(m), HOIS at xs =
−1000(m).
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Abstract

In this paper, we provide the first analysis and comparison between wave equation migration and
asymptotic migration in terms of providing amplitude information at the target. Wave equation
migration provides the angle dependent reflection coefficient at the image point, whereas the
asymptotic migration does not.

1 Introduction

We compare wave equation migration and asymptotic migration for the simplest possible overbur-
den, providing each algorithm with perfect data in the domain it requires. That allows us to isolate
and examine only the differences of the migration methods. There are several substantive differ-
ences between asymptotic (Kirchhoff) and wave equation migration. This paper focuses only on the
difference in the amplitude information provided by each method at the image point.

2 Background

Let’s begin by discussing the various concepts, objectives, and levels of ambition for seismic imaging.
This section borrows freely from the 2014 SEG expanded abstract for the invited recent advances
and the Road ahead presentation "Multiples: Signal or noise?". Methods that use the wave equation
to perform seismic migration have two ingredients: (1) a wave propagation component and (2) an
imaging principle or concept. Jon Claerbout (Claerbout, 1971; Riley and Claerbout, 1976) was
the initial and key wave-equation-migration imaging-concept pioneer and algorithm developer, and
together with Stolt (1978) and Lowenthal et al. (1985), they introduced imaging conditions for
locating reflectors at depth from surface-recorded data.
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2.1 Imaging conditions

The three key imaging conditions that were introduced are:

1. time and space coincidence of up and downgoing waves,

2. the exploding-reflector model, and

3. predicting a source and receiver experiment at a coincident-source-and-receiver subsurface
point, and asking for time equals zero (the definition of Wave-Equation Migration (WEM)).

For a normal-incident spike plane wave on a horizontal reflector, these three imaging concepts are
totally equivalent. However, a key point to make clear for this paper, is that for a non-zero-offset
surface seismic-data experiment they are no longer equivalent, for either a one-dimensional or a
multi-dimensional subsurface. For the purposes of determining quantitative information on the
physical meaning of the image, the clear choice is predicting a source and receiver experiment at
depth. Wave-equation migration (WEM) (see e.g. Stolt (1978), Stolt and Benson (1986), Stolt
and Weglein (2012)) is defined as using the third imaging condition, (3), the predicted source and
receiver experiment at depth at time equals zero. In anything beyond 1D normal-incidence or zero-
offset data, the other two imaging concepts (for example, time coincidence of up and downgoing
waves) turn out to be asymptotic ray travel-time-curve “Kirchhoff” algorithms with a trajectory of
image candidates, that are summed, looking for constructive addition for structural determination.
Lost is the definitive “yes” or “no” to a point being an image provided by a source and receiver
experiment at a coincident subsurface point. Stolt and his colleagues (Clayton and Stolt, 1981;
Stolt and Weglein, 1985; Stolt and Benson, 1986) extended the experiment-at-depth concept to
allow a separated source and receiver at time equals zero, to not only provide a definitive “yes” or
“no” to any given subsurface point being a reflector, but, in addition, provide the angle-dependent
reflection coefficient. The other imaging concepts cannot provide that imaging definitiveness nor
the quantitative angle-dependent reflection-coefficient information at the image point. In addition,
and in general all pre-stack versions, variants, and extensions of the first two imaging conditions
listed above, whether for one-way waves or two-way waves, or for data consisting of primaries, or
primaries and multiples, are always asymptotic or ray approximates of the third imaging condition.
Asymptotic migration, resulting from adopting imaging conditions (1) or (2), will impose asymptotic
forms of wave propagation that relate to ray theory and do not satisfy the ubiquitous space-filling
propagation and illumination of wave theory and wave-theory migration.

The properties and benefits of Wave-Equation Migration (WEM) in comparison to asymptotic
“Kirchhoff-like” migration are:

1. Definitiveness of a subsurface point corresponding to (or not corresponding to) structure from
a predicted source and receiver experiment at that point;

2. Quantitative angle-dependent reflection coefficient information at the imaged point; and
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3. Ubiquitous volume-filling wave propagation, coverage and illumination, compared to the lim-
ited propagation and illumination of ray theory.

This paper examine the second of these three issues.

2.2 RTM

When two-way migration was introduced by Whitmore, McMechan and their colleagues (Whitmore,
1983; McMechan, 1983), it was formulated and carried out first in post-stack and then in the pre-
stack domain by running the data back in time (hence reversed time migration, or RTM) and the
source field forward in time, and then cross-correlating the two fields at zero lag. The post-stack
and pre-stack versions were basically the earlier exploding-reflector model and the time coincidence
of up and downgoing wave-imaging concepts, respectively. That formulation of asymptotic RTM
has become so widespread that it has been adopted even for one-way migration, where too often
the very meaning of migration has come to be defined as:

I(x) =
∑

xs

∑

ω

S′(x,xs;ω)R(x,xs;ω)

S′(x,xs;ω)S(x,xs;ω) + ε2
, (1)

where R is the back-propagated reflection data, S is the forward-propagated source wavefield, the
zero-lag cross-correlation is indicated by the sum over angular frequency, ω, and the sum over
sources adds candidate-image travel-time trajectories. S′ is the complex conjugate of S, and ε is a
stabilization parameter.

The conventional RTMmethod represented by equation (1), consists of back propagating the receiver
field and forward propagating the source field, where each is carried out using the wave equation.
However, the cross-correlation at zero lag is the grown-up version of imaging condition (1) and the
imaging condition (1) is the place that the method entered the land of asymptotic and “Kirchhoff”
ray theory.

All current RTM methods (for primaries, multiples, primaries and multiples) use variants and
extensions or higher-order terms based on equation (1), are asymptotic ray-based migration, and
hence do not correspond to wave-equation migration.

That might come as a surprise to the very large number of researchers and those who apply equa-
tion (1) in oil and service companies, that with all the wave-equation computer effort and expense
to implement and utilize equation (1) that it doesn’t correspond to wave-equation migration. The
use of equation (1) is ubiquitous, but the imaging method it employs and represents and the RTM
migration itself is ray-theoretic and is therefore not ubiquitous in its subsurface coverage and illu-
mination.
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2.3 Wave-equation migration (WEM) for two-way waves, for diving waves, or
for migrating primaries and multiples

Neither the post- nor pre-stack current versions of RTM (captured in equation (1)) correspond to
predicting a source and receiver experiment at depth and hence neither is WEM RTM. We suspect
that many researchers that begin with migration forms such as equation (1) today, have no idea that
they are starting with and remain in asymptotic rather than wave-equation migration concepts and
algorithms. Weglein and his colleagues (Weglein et al., 2011a;b; Liu and Weglein, 2013) provided
for two-way wave propagation the first predicted source and receiver experiment at depth and wave-
equation migration, i.e., WEM RTM. Green’s theorem provides a solid basis and firm foundation
for predicting a source and receiver experiment at depth from the wavefield on an upper surface
of a volume. That’s how wave-equation migration RTM is formulated for either: (1) turning-wave
primaries, and (2) for reflection data consisting of both primaries and multiples. The benefits and
added value of WEM RTM compared to all current and conventional RTM methods (equation (1))
are the same benefits as between wave-equation migration and asymptotic or Kirchhoff forms for
one-way waves for one-way-wave migration: (1) definitiveness on whether a point in the subsurface
corresponds to structure, (2) the angle-dependent reflection coefficient at the image point, and (3)
the subsurface coverage, and illumination of waves versus rays. Equation (2) describes the predicted
source and receiver experiment at depth for WEM migration for one-way waves, where D inside
the integral is the surface data, and G−D0 is the anti-causal Green’s function that vanishes on the
measurement surface. Equation (3) is the analogous predicted source and receiver experiment step
in WEM RTM where D in the integral is the surface data, and GDN0 is the Green’s function that
along with its normal derivative vanishes on the lower surface and the walls of the volume.

D =

∫

Ss

∂G−D0

∂zs

∫

Sg

∂G−D0

∂zg
DdSg dSs

(Green, 1-way waves) (2)

D =

∫

Ss

[
∂GDN0

∂zs

∫

Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

+ GDN0

∂

∂zs

∫

Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

]
dSs

(Green, 2-way waves) (3)

Equation 2 is Stolt prestack one-way wave-equation migration (see also Schneider, 1978, figure 40),
and equation 3 is wave-equation-migration RTM.

These new wave-equation-migration RTM methods (equation 3) provide for two-way wave prop-
agation what earlier wave-equation migration methods (e.g., Stolt, 1978) provided for one-way
propagation (Weglein et al., 2011a; Stolt and Weglein, 2012).

In this paper, we examine WEM for one-way propagating waves (equation 2), and its asymptotic
(Kirchhoff) approximation to analyze and examine, in detail, the second of the three claimed benefits
provided by WEM compared to its asymptotic (Kirchhoff) forms.
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This paper provides an indication of the analogous benefit provided by equation 3 compared to
equation 1 for two way propagating waves and WEM and asymptotic RTM methods.

The RTM specific comparison will be the subject of a future work.

2.4 Wave-equation migration for one-way wave

Following Stolt (1978), Stolt and Benson (1986), and Stolt and Weglein (2012), we implement the
imaging concept described in imaging condition 3. In a 2D world, the acoustic wave equation is

(
∇2 +

ω2

c20

)
P (x, z|xs, zs;ω) = 0. (4)

The data, D, are the measurements of the wave field on the surface

D(xg|xs;ω) = P (xg, 0|xs, 0;ω). (5)

We begin by Fourier transforming the data into wavenumber-frequency domain

D(kgx|ksx;ω) =

∫
dxg

∫
dxs

∫
dtD(xg|xs;ω)ei(kxsxs−kxgxg+ωt). (6)

Then, we predict the experiment where the source is at depth z,

P (kgx, 0|ksx, z;ω) = D(kgx|ksx;ω)e−ikszz, (7)

where the vertical wavenumber component ksz for a down-going source wave is

ksz = +
ω

c

√

1− ksz
2c2

ω2
, (8)

and similarly we predict the receiver at depth z;

P (kgx, z |ksx, z;ω ) = P (kgx, z|ksx, 0;ω)eikgzz (9)

= D(kgx|ksx;ω)ei(kgz−ksz)z, (10)

where the vertical wavenumber component kgz for an up-going receiver wave is

kgz = −ω
c

√

1− kgz
2c2

ω2
. (11)

Figure 1 shows a cartoon of these first two steps of the three-step wave-equation migration scheme.
Now we have the experiment with source and receiver both at depth z, and we can apply the imaging
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Figure 1: The first two steps of the three-step wave-equation migration scheme.

condition, that is, predicting both source and receiver at the image location and letting time be
zero.

M(x, z) ≡ P (xg = x, zg = z |xs = x, zs = z; t = 0) (12)

=
1

(2π)3

∫
dω

∫
dksx

∫
dkgxD(kgx|ksx;ω)ei(kgz−ksz)zei(kgz−ksz)x. (13)

M(x, z) is the imaging result from wave-equation migration. Wave-equation migration (see e.g.
Clayton and Stolt (1980), Stolt and Weglein (1985), Weglein and Stolt (1999)), can be extended to
predict imaging result non-zero offset data at time equals zero. In order to obtain the subsurface
offset information, we first change the integral variables in the wave equation migration formula
from ksx, kgx, ω to kx, kh, kz. With the definition of kx, kh, kz,

kz ≡ kgz − ksz (14)

= −ω
c



√

1− kgx
2 − c2
ω2

+

√

1− ksx
2 − c2
ω2


 (15)

kx ≡ kgx − ksx (16)
kh ≡ kgx + ksx (17)

the Jacobian for a change of variables in equation 13 is

Det

[
∂(kx, kh, kz)

∂(ksx, kgx, ω)

]
=

2ωkz
c2ksxkgx

, (18)

and the result can be rewritten as

M(x, z) =
c2

2(2π)3

∫
dkz

∫
dkx

∫
dkhD(kgx|ksx;ω)

ksxkgx
ωkz

eikzzeikxx. (19)
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In equation 19, since two of the integrals are Fourier transform, we can obtain the image result in
kx, kz domain

M(kx, kz) =
c2

4π2

∫
dkhD(kgx|ksx;ω)

ksxkgx
ωkz

. (20)

Now the formula only contains an integral of kh, which is the Fourier conjugate of subsurface offset
xh. We obtain the migration imaging result with subsurface offset information,

M(kx, kz, kh) =
c2

4π2
ksxkgx
ωkz

D(kgx|ksx;ω). (21)

2.5 Asymptotic migration for one-way wave propagating

Following Stolt and Weglein (2012) (p.75) We start with the one-way wave equation migration
formula and rearrange the formula with the data in the space-time domain,

M(x, z) =
1

(2π)3

∫
dω

∫
dksx

∫
dkgxD(kgx|ksx;ω)ei(kgz−ksz)zei(kgz−ksz)x (22)

=
1

(2π)3

∫
dxg

∫
dxs

∫
dtD(xg|xs; t)

∫
dωeiωt

×
∫
dksx

∫
dkgxe

−i(kszz+ksx(x−xs))ei(kgzz+kgx(x−xg)). (23)

Then we apply the asymptotic approximation for the integral of ksx and kgx as shown in the
following,

∫
dksxe

−i(kszz+ksx(x−xs)) ' eiωrs/c
√

2πiωz2

crs3
(24)

∫
dkgxe

i(kgzz+kgx(x−xg)) ' eiωrg/c
√

2πiωz2

crg3
, (25)

where

rs =

√
z2 + (x− xs)2

rg =

√
z2 + (x− xg)2. (26)

Substituting the stationary phase approximations in equation 23, we obtain the asymptotic migra-
tion result, MA,

MA(x, z) =
1

(2π)3

∫
dxg

∫
dxs

∫
dtD(xg|xs; t)

∫
dωeiωt
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×
∫
dksx

∫
dkgxe

−i(kszz+ksx(x−xs))ei(kgzz+kgx(x−xg))

=
z2

(2π)2c

∫
dxs

∫
dxg

∂
∂tD(xg|xs; t = r/c)

(rgrs)
3/2

=
z2

(2π)2c

∫
dx̃h

∫
dx̃m

∂
∂tD(x̃m, x̃h; t = r/c)

(rgrs)
3/2

. (27)

This asymptotic migration formula is a weighted summation of the data along a trajectory of travel-
times corresponding to ray-paths from the source to image point and then to receiver.

A general ray theory based Kirchhoff migration formula is

I(x, z) =

∫
dx̃h

∫
dx̃mW (~rm, x̃m, x̃h)D(x̃m, x̃h, t = R/c), (28)

where the W is a weighting function (see e.g. Biondi (2006), Stolt and Benson (1986) (chapter 3)).

The asymptotic migration (equation 27) is the prototype Kirchhoff migration (equation 28). It is
derived as an asymptotic approximation of the clearest and most transparent form of WEM for
one-way waves, equation 23.

2.6 Subsurface information from asymptotic one-way migration

The asymptotic migration formula (equation 27) has x̃h and x̃m integrals quite similar to the wave
equation migration. Can we obtain the subsurface offset information from this formula? The answer
is no.

MA(x, z) is the output of interfering travel time curves. Although it is a function of x and z,
MA(x, z) is not the output at the midpoint coordinates (xm, zm) of a coincident (zero offset) source-
receiver experiment. It has limited value (if any) in being interpreted as a reflection coefficient, let
alone as the angle dependence of a reflection coefficient. A coincident source and receiver experiment,
directly above a reflector at small positive time, is related to the reflection coefficient of that local
reflection point. If the migration concept does not correspond to that experiment at depth, one
can correctly locate structure but cannot obtain the local reflection coefficient. If you nevertheless
decide to interpret MA(x, z) in equation 27 as though it was the output of an imagined or fictitious
zero offset experiment at t = 0, then taking that leap we would write

MA(x, z) = MA(xm, zm, xh = 0, t = 0). (29)

Furthermore, and in addition for the interpretation of the right hand member of equation 27 we
will assume by causality that for xh 6= 0 at t = 0 the measurement would be zero, that is

MA(xm, zm, xh, t = 0) = 0 for xh 6= 0. (30)
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Figure 2: Simple two-layer model we use to generate data.

By assuming that interpretation to equation 27, we bent over backwards to allow a way to com-
pare M(x, z, xh) with MA(x, z, xh) (or M(kx, kz, kh) with MA(kx, kz, kh)) in terms of amplitude
information from the actual and fictitious experiment output by WEM and asymptotic migration,
respectively.

Alternatively, further stretching credulity to provide an assist for interpreting the asymptotic mi-
gration MA(x, z), we could treat the MA(x, z, x̃h) from equation 27

MA(x, z, x̃h) =
z2

(2π)2c

∫
dx̃m

∂
∂tD(xg|xs; t = r/c)

(rgrs)
3/2

(31)

where x̃h is a fixed offset of the surface data, not the offset of the experiment initialize at depth, as
though it corresponded to xh in M(x, z, xh, t = 0) (although it doesn’t). We will show that does
not correspond even for the simplest possible imaging example, as exemplified in the result section.

3 A test and comparison with the simplest possible imaging problem

In the following section, we will demonstrate the differences between the wave equation migration
and the asymptotic migration in the simplest possible case with offset data.

The simplest scenario for such a test would be one-way wave-equation migration and its asymptotic
form in a two-layer acoustic model, in which each layer is homogeneous. Figure 2 shows the model
we used to generate the data.

We test the amplitudes of both wave-equation migration and its asymptotic approximation to see
how the amplitudes of their images relate to the angle dependent reflection coefficient. We use
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wave-equation migration asymptotic migration

migration method one-way Stolt migration asymptotic approximation of one-way
Stolt migration

data analytic data (reflectivity method in
wavenumber-frequency domain)

analytic data (Cagniard-de Hoop
method in space-time domain)

migration procedure

step 1: downward continuation of
source

step 2: downward continuation of re-
ceiver

step 3: apply imaging condition

step 1: start with one-way Stolt mi-
gration formula

step 2: apply stationary phase ap-
proximation

imaging result M(x, z) MA(x, z)

imaging result with subsur-
face offset information M(kx, kh, kz) or M(x, xh, z)

N/A (requires introduction of an imag-
inary experiment corresponding to the
asymptotic imaging result)

Table 1: Test procedure for wave-equation migration and its asymptotic form

analytic data for both wave-equation migration and its asymptotic approximation. Using analytic
data will avoid the effect of any numerical inaccuracy in the data generating procedure and all
differences will be attributable to the processing methods being compared.

Table 1 shows the migration procedure for wave-equation migration and its asymptotic form.

3.1 Data for wave-equation migration

For the wave equation migration, we use the analytic data generated by the reflectivity method in
the frequency-wave number domain (e.g., in Ewing, Jardetzky and Press (1957))

D(ks, kg, ω) =

∫ +∞

−∞
dxge

−ikgxg r(ks, qs)e
iksxge2iqsz1

4πiqs

=δ(ks − kg)
r(ks, qs)e

2iqsz1

4πiqs
. (32)

3.2 Data for asymptotic migration

For the asymptotic migration, we use the analytic data generated by Cagniard-de Hoop method in
space-time domain (as utilized inZhang and Weglein (2006)). The analytic data for this model are

D(xs, xg, zs, zg, t) =
1

2π
Re(p̂p)

H(t−R/c0)√
t−R2/c02

, (33)

with

R =

√
(xs − xg)2 + (zs + zg − 2zr)

2, (34)
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where zr is the depth of the reflector.

Note that since in the model the velocity in the first layer is greater than the velocity of the second
layer, the reflection data does not have a post-critical component.

3.3 Results

We compare the results from the two different migration in the same domain.

Figure 3 – 5 show the results of one-way wave equation migration and asymptotic migration in
different domains, respectively. Figure 3 shows the results in space domain (xh, z), figure 4 shows
the results in wavenumber-depth domain (kh, z) and figure 5 shows the results in wavenumber
domain (kh, kz).

We can analytically calculate the angle dependent reflection coefficient for the model shown in figure
2 by using the equation 35

r(ksx, ksz) =
ρ2ksz1 − ρ1ksz2
ρ2ksz1 + ρ1ksz2

. (35)

Figure 6 shows the result of this analytic calculation.

We can also retrieve the angle dependent reflection coefficients from WEM result (equation 36) as
well.

M(km, kz, kh) =
c2

4π
dkhD(kgx| ksx;ω)

kgzksz
ωkz

. (36)

And then we can simplify the formula for a 1D medium. For a 1D medium, the kgx and ksx will be
equal,

D(kgx |ksx ;ω) = δ(kgx − ksx)D(kgx |ksx ;ω) (37)
= δ(km)D(kgx |ksx ;ω). (38)

We plug the analytic form of the data into equation 36, and then obtain the angle dependent
reflection coefficient

r(ksx, ksz) = −πω
c2

4πi

e2ikszzr
M(kz, kh). (39)

The angle dependent reflection coefficient should be a real number by definition, so equation 39
should give us a real number for result. In ideal case that will not be a problem, all phase factors
inside the formula will cancel each other and a real value result will be obtained. However in
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(d)

(e)

Figure 3: (a) wave-equation migration image in xh-z domain; (b) asymptotic migration image in
xh-z domain.
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(a)

(b)

Figure 4: (a) wave-equation migration image in kh-z domain; (b)asymptotic migration image in
kh-z domain.
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(a)

(b)

Figure 5: (a) wave-equation migration image in kh-kz domain; (b)asymptotic migration image in
kh-kz domain.
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Figure 6: The angle dependent reflection coefficient by analytic calculation r(ksx, ksz) = ρ2ksz1−ρ1ksz2
ρ2ksz1+ρ1ksz2

numerical calculation, the numerical inaccuracy will cause a complex result of equation 39. Hence,
we use the amplitude (module of the complex number) of the result instead of the value itself,

|r(ksx, ksz)| =
∣∣∣∣
πω4π

c2

∣∣∣∣ |M(kz, kh)| . (40)

We use equation 40 to calculate the angle dependent reflection coefficient from wave-equation and
asymptotic migration result (figure 5) respectively, and figure 7 shows the results.

By comparing figures 6 and 7a, we find the inverted angle dependent reflection coefficient from wave-
equation migration image is almost identical as the theoretical value except for the small vertical
wavenumber part. The differences are due to the numerical stabilizing scheme for the division by
small vertical wavenumber. Besides these differences, the result is perfect.

However, the inverted angle dependent reflection coefficient from asymptotic migration image (fig-
ures 6) is not even close to the theoretical value.

As mentioned previously, we could treat the MA(x, z, x̃h) from equation 31 where x̃h is a fixed
offset of the surface data, not the offset of the experiment at depth, as though it corresponded to
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(a)

(b)

Figure 7: (a) The angle dependent reflection coefficient inverted from wave-equation migration imag-
ing (figure 5a); (b) The angle dependent reflection coefficient inverted from asymptotic migration
imaging (figure 5b)
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xh in M(x, z, xh, t = 0) while it doesn’t. We compare that result MA(kx, kz, k̃h) in figure 8a and
the angle dependent reflection coefficient in figure 8b. We can see even for the simplest possible
imaging example, the equation 31 could not provide any angle dependent information at all.

4 Conclusions

We compare the amplitudes of the wave equation migration and the asymptotic migration for the
simplest possible overburden, with both perfect data in the domain each requires, and attempt
to retrieve the angle dependent reflection coefficient from both migration methods. The ampli-
tude of wave-equation migration is closely related to the angle dependent reflection coefficient of
the reflector, thus angle dependent reflection coefficient can be retrieved from wave-equation mi-
gration imaging. The asymptotic approximation does not correspond to a coincident source and
receiver experiment at depth. We cannot retrieve the angle dependent reflection coefficient after the
asymptotic approximation comes into the migration scheme. Attempts to attribute/interpret the
asymptotic migration result as due to an imaginary source and receiver experiment at the image
point, does not provide the angle dependent reflection coefficient. This is an important lesson to
keep in mind when examining the amplitude information contained in all current (asymptotic) RTM
methods.
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Short note: Initial analysis and comparison of the wave equation and
asymptotic prediction of a receiver experiment at depth for one-way

propagating waves
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Abstract

In a companion paper, Fu et al. (2014) examine the amplitude information at the image that
derives from a wave equation method and its corresponding asymptotic form. The operator
that is asymptotically approximated contains wave equation migration (WEM) ingredients as
the prediction of a source and receiver experiment at depth. The purpose of this note is to
isolate and examine the impact of the asymptotic approximation on the production of a receiver
at depth. The spectral difference between the wave and asymptotic receiver experiment is
consistent with the corresponding migration difference.

1 Introduction

The work of Fu et al. (2014) provide the first analysis and comparison between wave equation
migration and asymptotic migration in terms of providing amplitude information at the target. We
focus on one part of that procedure, i.e., the step of predicting the receiver at depth using a wave-
equation prediction method and its asymptotic prediction counterpart, providing complimentary
understanding of the work done by Fu et al. (2014).

2 Theory

2.1 Wave-equation method prediction

Following Stolt (1978); Stolt and Benson (1986); Stolt and Weglein (2012), and assuming only
upgoing wave existing in the medium, the wave-equation migration method to predict the exper-
iment with receiver at depth is: (1) Fourier transforming data generated by Cagniard-de Hoop
method, DCdH(xg, zg|xs, zs; t), on t and xg, to obtain the data in frequency-wavenumber domain,
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D(kg, zg|xs, zs;ω); (2) applying phase-shift factor eikz(z−zg) to D(kg, zg|xs, zs;ω), where z is the pre-

dicted receiver depth, and kz = − ω
c0

√
1− k2gc

2
0

ω ; (3) Inverse Fourier transforming the phase-shifted
data from kg to x, see equation 1.

DW (x, z |xs, zs;ω ) =
1

(2π)

∫ ∫
D(xg, zg|xs, zs;ω)e−ikgxgdxgeikz(z−zg)eikgxdkg, (1)

whereDW (x, z |xs, zs;ω ) is the predicted receiver at (x, z) using a wave-equation prediction method.

2.2 Asymptotic method prediction

Using stationary phase approximation, the kg integral in equation 1 can be approximated as

∫
ei(kg(x−xg)+kz(z−zg))dkg =

√
2πiω(z − zg)2

cr3g
, (2)

where rg =
√

(z − zg)2 + (x− xg)2. Then, equation 1 becomes

DA(x, z |xs, zs;ω ) =
1

(2π)

∫ ∫
D(xg, zg|xs, zs;ω)e−ikgxgdxgeikz(z−zg)eikgxdkg

=
1

(2π)

∫
D(xg, zg|xs, zs;ω)dxg

∫
ei(kg(x−xg)+kz(z−zg))dkg

' 1

(2π)

∫
D(xg, zg|xs, zs;ω)dxge

−iωrg/c
√

2πiω(z − zg)2
cr3g

. (3)

DA(x, z |xs, zs;ω ) from equation 3 is the predicted receiver at (x, z) using an asymptotic prediction
method.

3 Numerical tests

3.1 Synthetic data generation by Cagniard-de Hoop method

We use the Cagniard-de Hoop (CdH) method to generate the test data in the space-time domain
in two dimensions. In an acoustic medium, for a source at (0, zs), and the receiver at (xg, zg) (see
Fig 1), the pre-critical reflection Green’s function is (e.g., Zhang and Weglein (2005))

DCdH(xg, zg|0, zs, t) =
−1

2π
RePP

H(t− R
c0

)
√
t2 − R2

c20

(4)
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where

PP =
η0 − η1
η0 + η1

;

ηi =

√
c−2i − p2;

p =





xgt−|zg+zs−2zd|
√
R2/c22−t2

R2 , t <= R
c0

xgt+i|zg+zs−2zd|
√
R2/c22−t2

R2 , t >= R
c0

R =
√
x2g + (zg + zs − 2zd)2.

3.2 Test results

We use equation 4 to generate the synthetic data based on the model shown in Figure 1. Reflector
depth is at zd = 2, 000m, source is located at (xs = 0, zs = 0), offset of receivers is from xg =
−20, 000m to xg = 20, 000m at depth zg = 400m, receiver interval, dx, is 4m, time sampling
interval, dt, is 0.001s (Tmax = 5s). Velocities are 2, 000m/s and 1, 000m/s in the first and second
medium, respectively. The generated synthetic data are shown in Figure 3.
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Figure 1: Model to generate CdH synthetic test data as input.

Figure 2: Predicted wavefield at depth 600 m.

We use this data set (receiver depth zg = 400m) to predict the receiver at depth z = 600m (see
Figure 2) using both wave-equation prediction method (equation 1) and its asymptotic prediction
counterpart (equation 3). We compare the predicted results of DW and DA at depth z = 600m
with the exact DCdH at depth z=600m at 0m offset and 2,000m offset. In all these figures, the
black line is the exact data generated by using the Cagniard-de Hoop method at depth z = 600m,
the red line is the asymptotic prediction result, and the blue line is the wave-equation prediction
result, respectively.

4 Conclusion

The asymptotic approximation of the prediction of receiver experiment at depth takes a highly
nonlinear dependence of the phase in equation 1 [from kz] and replace it with a liner dependence on
the phase in equation 3. The resultant difference in spectrum at the low end has a dramatic impact
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Figure 3: CdH synthetic test data generated from the one reflector model in Figure 1.

on subsequent imaging step, and makes the asymptotic migration method not an approximated
source and receiver coincident at time equals zero.
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Figure 4: Space-time domain comparison at x=0m, z=600m (1.0s to 2.8s).

Figure 5: (Zoom-in of Figure 4) Space-time domain comparison at x=0m, z=600m (1.6s to 1.9s).
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Figure 6: Space-frequency domain comparison at x=0m, z=600m (0Hz-100Hz).

Figure 7: (Zoom-in of Figure 6) Space-frequency domain comparison at x=0m, z=600m (0Hz-
100Hz).

208



RTM imaging M-OSRP13-14

Figure 8: Space-time comparison at x=2,000m, z=600m (1.0s to 2.8s).

Figure 9: (Zoom-in of Figure 8) Space-time comparison at x=2,000m, z=600m (1.9s to 2.2s).
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Figure 10: Space-frequency domain comparison at x=2,000m, z=600m (0Hz-100Hz).

Figure 11: (Zoom-in of Figure 10) Space-frequency domain comparison at x=2000m, z=600m
(0Hz-100Hz).
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The first wave theory RTM, examples with a layered medium, predicting the
source and receiver at depth and then imaging, providing the correct location
and reflection amplitude at every depth location, and where the data includes

primaries and all internal multiples.

Fang Liu and Arthur B. Weglein

April 29, 2013

Abstract

Reverse time migration (RTM) is the cutting-edge imaging method used in seismic explo-
ration. In earlier RTM publications, density was often used to balance a medium with velocity
variation, such that the acoustic impedance − the product of velocity and density − stays
constant. Thus, reflections from sharp boundaries are avoided. In order to be more complete,
consistent, realistic, and predictive, density variation is intentionally included in our study so
that we can test its impact on the Green’s theorem-based wave-theory RTM algorithms.

The major objectives of this article are to advance our understanding and to provide con-
cepts, added imaging capabilities, and new algorithms for RTM. Although our objective of
extracting useful subsurface information from recorded data is not different from that of well-
known previous RTM publications, our approach is different: we use wave theory as much as
possible to maximize the benefit from the Green’s function and Green’s theorem, rather than
use the more popular methodology of running finite-difference modeling backwards in time.

A significant artifact in RTM is caused by the fact that numerous subsurface seismic events
necessary for backward propagation never return to the measurement surface. This unwanted
phenomenon also exists for the wave-field-prediction method formulated from Green’s theorem:
Green’s formula (in its general form, i.e., equation (2.5)), which links the wave field on the
entire outer surface with interior field values, also requires data from everywhere on the surface.
Weglein et al. (2011a) and Weglein et al. (2011b) proposed a special Green’s function with
vanishing Dirichlet and Neumann boundary conditions at the deeper boundary to cope with
that issue. This article provides a natural extension of the two aforementioned papers, into a
medium with density variation and more complicated geological structures.

The major advantage of RTM over many other seismic imaging methods is its additional
ability to handle two-way propagation without assuming that the events in the input data
are only up-going and that all multiples have been removed. This article demonstrates with
numerical examples that both up- and down-going waves can be precisely predicted from the
data (including internal multiples) on the top surface only. In our example, the contribution of
the transmission events that never return to the measurement surface is deliberately eliminated,
and it is not necessary for those events to enter the calculation.
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The Green’s function with vanishing Dirichlet and Neumann boundary conditions at the
deeper boundary demonstrates many remarkable properties. For example, it vanishes if the
receiver is deeper than the source, it violates reciprocity, and its value is not affected by any
heterogeneity outside the region between the source and receiver. The double vanishing bound-
ary condition also leads us to a wave-theory solution for a model that has many reflectors and
lacks internal multiples.

In this paper, two approaches have been used to derive the Green’s function with vanishing
Dirichlet and Neumann boundary conditions at the deeper boundary. The first is an analytical
boundary-matching method in the frequency domain, and the second is the numerical finite-
difference approach identical to many current finite-difference forward-modeling procedures in
the industry. The second method can be extended to multiple dimensions with lateral variation
in the medium properties. We find these two methods agree with each other with regard to the
intrinsic accuracy issue of the finite-difference approximation to differential equations.

In this paper, we also have some very early and very positive news on the first wave theory
RTM imaging tests, with a discontinuous reference medium and images that have the correct
depth and amplitude (that is, producing the reflection coefficient at the correctly located target)
with primaries and multiples in the data. That is an implementation of Weglein et al. (2011a;b)
with creative implementation and testing and analysis.

1 Introduction

One of the major early objectives of Reverse Time Migration (RTM) is to obtain a better image of
salt flanks through diving waves than is obtained by directly imaging through the complex overbur-
den. The key new capability of the RTM method compared with one-way migration algorithms is
to allow two-way wave propagation in the imaging procedure. This article follows closely the idea
established in Weglein et al. (2011a;b): achieving a Green’s function with vanishing Dirichlet and
Neumann boundary conditions at the deeper boundary, to eliminate the need for measurement at
depth.

To achieve the two-way imaging, we study the behavior of our Green’s function in three examples:
(1) a homogeneous model, (2) a single reflector model, and (3) a two-reflector model with internal
multiples. In order to get two-way propagation without complexity and approximation, we study 1D
examples with both up- and down-going wave propagation. We provide the details to demonstrate
the underlying physics.

As stated in Whitmore (1983); Baysal et al. (1983); Luo and Schuster (2004); Fletcher et al. (2006);
Liu et al. (2009) and Vigh et al. (2009), accurate medium properties above the target are required for
the RTM procedure discussed in this article. The major difference is that in most RTM algorithms in
the industry, a smoothed version of the velocity is used in the imaging procedure to avoid reflections
from the velocity model itself, while the exact velocity models (often discontinuous) are used in all
three examples in this article.

To apply the firm footing and math-physics foundation established in Weglein et al. (2011a;b) in
an arbitrary medium, we first study in detail the properties of the Green’s functions with vanishing
boundary conditions at the deeper boundary z′ = B. The understanding of the aforementioned
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properties provides us with a straightforward procedure for constructing a Green’s function with
the double vanishing boundary condition for a 1D medium with arbitrary complexity. We adopt
the notations of the aforementioned articles as much as possible while introducing some minor
modifications to allow smooth expansions into new territories.

One of the remarkable properties of the Green’s function in this article is that, although both the
causal Green’s function G+

0 and the anti-causal Green’s function G−0 vary with the medium below
the source, the Green’s function with both vanishing Dirichlet and Neumann boundary conditions
does not. The implications are that if we want to predict the wave field at depth z, the medium’s
properties deeper than z are not required. Such a property is very difficult to visualize if G+

0 or G−0
is used to make the prediction, since both of them will change with the medium’s properties deeper
than z. It is worthwhile to note that this property of the Green’s function with vanishing boundary
conditions is also demonstrated by the WKBJ Green’s function used in the derivation of FK and
phase-shift migrations. While the WKBJ Green’s function is an approximate solution for a medium
with smooth variations, and the Green’s function with double vanishing boundary conditions in
this report is exact and for a discontinuous medium, nevertheless we find their similarity worth
reporting.

The property that allows an easy iterative procedure for constructing a Green’s function with double
vanishing boundary conditions is the following: the field values of the Green’s function vanishing
at the deeper surface are not affected by heterogeneity beyond the region between the field point
and the source. Consequently, we can start the calculation from a field location sufficiently close
to the source that the medium in between is homogeneous. In this case, the initial field value
(for all time and frequency values) can be calculated from a much simpler medium obtained by
extending the homogeneity to the entire space∗. This initial field value contains two parts: the
first part† is the out-going G+

0 and is produced by the actual source, and the second term is the
downward propagation portion‡ that will cancel with the downward propagation energy of G+

0 .
Consequently, it will give a solution that vanishes completely below the source, satisfying both
Dirichlet and Neumann boundary conditions. For the solution of the wave field above the initial
field, standard analytic boundary-matching methods or discrete finite-difference procedures can be
used to iteratively extrapolate the function values to locations further and further away from the
source location.

Another property of the Green’s function with both Dirichlet and Neumann boundary conditions
vanishing is that it contains no multiples or reflections from the energy produced by the source,
even for models with an arbitrary number of reflectors. This property, derived from precise Green’s
theory, agrees with many methodologies in the current seismic imaging procedures (which are often
derived with some approximation to the wave equation): a smooth model is preferred, in order to
exclude reflections and multiples caused by the velocity model.

The major contributions of this article are:
∗For example, equation (14) of Weglein et al. (2011b) or equation (3.1) in this paper.
†The second term of equation (14) of Weglein et al. (2011b).
‡The first term of equation (14) of Weglein et al. (2011b).
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• It provides two methods to calculate the Green’s function with vanishing Dirichlet and Neu-
mann boundary conditions for arbitrary 1D medium.

• It incorporates the density variation for Green’s theorem RTM.

• It provides the finite-difference scheme for calculating the Green’s function that vanishes at
the deeper boundary.

• It provides a two-way propagation and downward continuation of wave fields, by using Green’s
function with double vanishing boundary conditions.

• It demonstrates remarkable properties of the precise analytical Green’s function that coincide
with many existing seismic imaging ideas derived with different degrees of approximation.

The following notations are worth mentioning at the beginning: G+
0 and G−0 are used to denote

causal and anti-causal Green’s functions, respectively. GDN
0 is used to denote the Green’s function

with vanishing Dirichlet and Neumann boundary conditions at the deeper boundary. k = ω/c0
where c0 is the constant velocity of the reference medium, and ω is the angular frequency.

Although Green’s theorem and Green’s functions are more often discussed in the frequency domain,
in this paper the Green’s functions and wave field prediction examples are always graphed in the
time domain since this domain is more easily accessible (without expressing the values in complex
numbers). A very straightforward Fourier transform is sufficient to make the domain change:

f(t) =
1

2π

∞∫

−∞

f̃(ω)e−iωtdω. (1.1)

The Green’s function, resulting from an ideal impulsive source, contains frequency information of
an arbitrary frequency. For display, we convolve it with a band-limited wavelet (the first derivative
of a Gaussian function§) to avoid aliasing beyond the Nyquist frequency.

2 Green’s theorem wave-field prediction with density variation

In many migration methods, density variation is often left out of the acoustic wave equation since it
does not affect the travel time. In reverse time migration, however, density serves a very important
role even in the early stage: in order to have a reflectionless medium with velocity variations, a
counterbalancing density variation is introduced to make sure the acoustic impedance is constant.
Therefore in our derivation of Green’s theorem-based RTM, we explicitly incorporate the density
variations in the acoustic medium. First, let us assume the wave propagation problem in a volume
V bounded by a shallower depth A and deeper depth B:

§The wavelet is iωe−ω2/β in the frequency domain or 1
2

√
β
π
e−βt2/4 in the time domain, where β = (20π)2
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{
∂

∂z′
1

ρ(z′)
∂

∂z′
+

ω2

ρ(z′)c2(z′)

}
P (z′, ω) = 0 , A < z′ < B, (2.1)

where z′ is the depth, and ρ(z′) and c(z′) are the density and velocity fields, respectively. In
exploration seismology, we let the shallower depth A be the measurement surface where the seismic
acquisition can be accomplished economically. The volume V is the finite volume defined in the
“finite volume model” for migration, the details of which can be found in Weglein et al. (2011a). We
measure P at the measurement surface z′ = A, and the objective is to predict P anywhere between
the shallower surface and another surface with greater depth, z′ = B. This can be achieved via the
solution of the wave-propagation equation in the same medium by an idealized impulsive source or
Green’s function:

{
∂

∂z′
1

ρ(z′)
∂

∂z′
+

ω2

ρ(z′)c2(z′)

}
G0(z, z

′, ω) = δ(z − z′) , A < z′ < B, (2.2)

where z is the location of the source, and z′ and z increase in a downward direction. It can be
achieved as follows:

• Multiply equation (2.2) by P (z′, ω).

• Multiply equation (2.1) by G0(z, z
′, ω).

• Integrate the difference of the two aforementioned products (both are functions of z′) over the
variable z′ from A to B.

The right-hand side of the operation above is:

B∫

A

P (z′, ω)δ(z − z′)dz′ = P (z, ω), (2.3)

where in the derivation above we assume z is inside the volume V (i.e., A < z < B). Omitting the
arguments of the following functions: P (z′, ω), G0(z, z

′, ω), c(z′) and ρ(z′), since their arguments
will not be changed in the derivation process, the left-hand side of the operation above is:
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B∫

A

[
P

∂

∂z′

{
1

ρ

∂G0

∂z′

}
+

ω2PG0

ρc2
−G0

∂

∂z′

{
1

ρ

∂P

∂z′

}
− ω2PG0

ρc2

]
dz′

=

B∫

A

[
P

∂

∂z′

{
1

ρ

∂G0

∂z′

}
−G0

∂

∂z′

{
1

ρ

∂P

∂z′

}]
dz′

=

B∫

A

[
P

∂

∂z′

{
1

ρ

∂G0

∂z′

}
+

∂P

∂z′
1

ρ

∂G0

∂z′
−G0

∂

∂z′

{
1

ρ

∂P

∂z′

}
− ∂G0

∂z′
1

ρ

∂P

∂z′

]
dz′

=

B∫

A

[
∂

∂z′

{
P

ρ

∂G0

∂z′

}
− ∂

∂z′

{
G0

ρ

∂P

∂z′

}]
dz′ =

B∫

A

∂

∂z′

{
P

ρ

∂G0

∂z′
− G0

ρ

∂P

∂z′

}
dz′

=

B∫

A

∂

∂z′

{
1

ρ

[
P
∂G0

∂z′
−G0

∂P

∂z′

]}
dz′

=
1

ρ

{
P
∂G0

∂z′
−G0

∂P

∂z′

}∣∣∣∣
z′=B

z′=A
.

(2.4)

Equating the results obtained by the left- and right-hand-side operations, and restoring the specific
arguments of each function, we have:

P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂G0(z, z
′, ω)

∂z′
−G0(z, z

′, ω)
∂P (z′, ω)

∂z′

}∣∣∣∣
z′=B

z′=A
, (2.5)

where A and B are the shallower and deeper boundaries, respectively, of the volume to which the
Green’s theorem is applied. It is identical to equation (43) of Weglein et al. (2011a), except for the
additional density contribution to the Green’s theorem. Similar density contributions can be found
in many seismic imaging procedures, such as equation (21) of Clayton and Stolt (1981).

In the arguments of G0, z is the location of the source, and z′ is the location of the receiver. The
Green’s theorem given in equation (2.5) predicts the data P (z, ω) in an arbitrary location using the
data P (z′, ω) at the measurement surface. In this specific application, z is the depth at which the
wave-field prediction is carried out.

Note that in equation (2.5), the field values at the surface of the volume V are necessary for
predicting the field value inside V . The surface of V contains two parts: the shallower portion
z′ = A and the deeper portion z′ = B. In seismic exploration, the need for data at z′ = B is often
the issue. For example, one of the significant artifacts of the current RTM procedures is caused by
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Figure 1: Green’s theorem predicts the wave field at an arbitrary depth z between the shallower
depth A and deeper depth B.

this phenomenon: there are events necessary for accurate wave-field prediction that reach z′ = B
but never return to z′ = A, as is demonstrated in Figure 1. The solution, based on Green’s theorem
without any approximation, was first published in Weglein et al. (2011a) and Weglein et al. (2011b),
the basic idea can be summarized as the following.

Since the wave equation is a second-order differential equation, its solution is not unique. In other
words, for a wave equation with a specific medium property, there are an infinite number of solutions.
This freedom in choosing the Green’s function has been taken advantage of in many seismic-imaging
procedures. For example, the most popular choice in wave-field prediction is the physical solution
G+

0 . In downward continuing an up-going wave field to a subsurface, the anti-causal solution G−0 is
often used.

If both G0 and ∂G0/∂z
′ vanish at the deeper boundary z′ = B, where measurement is often much

more expensive than acquiring data at the shallower boundary z′ = A, then only the data at the
shallower surface (i.e., the actual measurement surface) is needed in the calculation. We use GDN

0

to denote the Green’s function with vanishing Dirichlet and Neumann boundary conditions at the
deeper boundary.

3 The vanishing property of GDN
0 and its independence of the medium’s prop-

erties below the source

First, let us look at some properties of the Green’s function detailed in equation (14) of Weglein
et al. (2011b):

GDN
0 (z, z′, ω) =

−1
2ik

(
e−ik(z−z

′) − eik|z−z
′|
)
, (3.1)

where k = ω/c0 and the quantity c0 is the unchanged homogeneous velocity in the entire space,
and z and z′ are the locations of the source and receiver, respectively. This Green’s function is
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Figure 2: The construction of GDN
0 for a homogeneous medium with constant velocity 1500m/s.

The source depth is 500m. The left panel is the causal solution (if we denote k = ω/c0 and H is
the Heaviside function, the causal Green’s function is G+

0 (z, z
′, ω) = eik|z−z

′|/(2ik) in the frequency
domain or G+

0 (z, z
′, t) = −c0

2 H(t − |z − z′|/c0) in the time domain). The middle panel shows the
homogeneous solution (−eik(z′−z)/(2ik) in the frequency domain or c0

2 H(t− (z′− z)/c0) in the time
domain) that cancels with the left panel below the source. The right panel results from summing the
two panels on its left and is the desired Green’s function with double vanishing boundary conditions.
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for a whole-space homogeneous medium with c0 as its velocity. It also satisfies the Dirichlet and
Neumann boundary conditions at the deeper boundary B:

GDN
0 (z, z′, ω)

∣∣
z′=B = 0,

∂GDN
0 (z, z′, ω)
∂z′

∣∣∣∣
z′=B

= 0.

The construction of equation (3.1) (i.e., GDN
0 in a homogeneous medium) is detailed in Weglein et al.

(2011b); we only provide its graphic version in this article in Figure 2.

In equation (3.1), the second term is the causal solution for the same homogeneous medium, and
the first term is a specific solution to the homogeneous¶ wave equation, introduced to perfectly
cancel the causal solution at the deeper boundary. The major objective of this Green’s function is
to eliminate the need for measurement at the deeper surface: z′ = B.
According to equation (2.5), for arbitrary values of the wave field P (z′, ω), this objective implies
G0(z, z

′, ω)|z′=B = ∂G0(z,z′,ω)
∂z′

∣∣∣
z′=B

= 0, since normally the data are available only at the measure-
ment surface: z′ = A. The variable z is used to denote the depth to which we want to continue the
wave field downward. It is obvious that A < z′ < B. First, if z < z′, this Green’s operator vanishes,
since

GDN
0 (z, z′, ω) =

−1
2ik

(
e−ik(z−z

′) − eik|z−z
′|
)

z<z′
=

−1
2ik

(
eik(z

′−z) − eik(z
′−z)

)

≡ 0.

(3.2)

According to equation (3.2), this Green’s function vanishes not only for the isolated location at B,
but also in the extended entire half-space below the source, which include z′ = B.
Obviously this Green’s function satisfies the wave equation of the whole-space homogeneous medium
(i.e., equation (7) of Weglein et al. (2011b)):

(
d2

dz′2
+

ω2

c20

)
GDN

0 (z, z′, ω) = δ(z − z′). (3.3)

If we have an inhomogeneous medium c(z′) such that c(z′) = c0 when z′ < z, the Helmholtz equation
for this inhomogeneous medium is

¶In this article the adjective homogeneous has different meaning when it acts on medium or equation. In the first
case it means medium with constant acoustic property in the entire space, while in the second case it means a wave
equation without the source term.
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Figure 3: The construction of GDN
0 for a medium with one reflector (the velocities above and below

the reflector are 1500m/s and 2700m/s, respectively). The source depth is 500m and is above the
single reflector at 700m. The left panel is the causal solution G+

0 , and the middle panel shows the
homogeneous solution that cancels with the left panel below the source. The right panel results
from summing the two panels on its left and is the desired Green’s function with double vanishing
boundary conditions.

(
d2

dz′2
+

ω2

c2(z′)

)
G0(z, z′, ω) = δ(z − z′). (3.4)

When z′ < z, wave equation (3.4) is satisfied by Green’s function (3.1) since it satisfies the homo-
geneous wave equation (3.3), which is identical to the inhomogeneous equation (3.4) when z′ < z.

For the other possibility, that z′ > z, wave equation (3.4) is also satisfied by Green’s function (3.1)
since it completely vanishes in this region. If we substituteGDN

0 for G0, left-hand side of equation (3.4)
vanishes since the spatial partial derivative is zero, while the right-hand side vanishes due to the fact
that the source z is located outside the region of interest. Consequently, equation (3.4) is satisfied
by the Green’s function in equation (3.3).

As an example, introducing a single reflector below the source for the Green’s function in equa-
tion (16) of Weglein et al. (2011b) will not change the value of the Green’s function. The construc-
tion of GDN

0 with its source located above the single reflector is detailed in Weglein et al. (2011b);
here we provide its graphical version in Figure 3. The equivalence of the Green’s function (3.1) to
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equation (39) in Weglein et al. (2011b) can be demonstrated as follows. Since a is the depth of
the reflector, and we consider the case in which the source is above the reflector, we have z < a
and sgn(a − z) = 1. According to Appendix B of Weglein et al. (2011b), we have: D1 = 0,
C1 = − T

2ike
ik|a−z|e−ik1a = − T

2ike
ik(a−z)e−ik1a. Thus, the wave field below the reflector (i.e., z′ > a,

the transmitted wave) can be simplified as:

T

2ik
eik|a−z|eik1(z

′−a) + C1e
ik1z′ +D1e

−ik1z′

=
T

2ik
eik|a−z|eik1(z

′−a) − T

2ik
eik|a−z|e

−ik1a
eik1z

′
+ 0× e−ik1z

′

=
T

2ik
eik|a−z|eik1(z

′−a) − T

2ik
eik|a−z|eik1(z

′−a) ≡ 0.

(3.5)

Obviously, this Green’s function vanishes if z′ > a (is deeper than the reflector). The same vanishing
property is also displayed for GDN

0 without the single reflector below the source; the details can be
found in equation (3.2).

Since A1 = −1
2ike

−ikz, and B1 = −R
2ik e

ik(2a−z), and if z′ < a is above the reflector, the reflected wave
in equation (39) of Weglein et al. (2011b) can be simplified as follows:

eik|z
′−z|

2ik
+R

e−ik(z
′−a)

2ik
eik(a−z) +A1e

ikz′ +B1e
−ikz′

=
eik|z

′−z|

2ik
+R

eik(2a−z
′−z)

2ik
+A1e

ikz′ +B1e
−ikz′

=
eik|z

′−z|

2ik
+R

eik(2a−z
′−z)

2ik
− eik(z

′−z)

2ik
− R

2ik
eik(2a−z)e−ikz

′

=
eik|z

′−z|

2ik
+R

eik(2a−z
′−z)

2ik
− eik(z

′−z)

2ik
−R

eik(2a−z
′−z)

2ik

=
eik|z

′−z|

2ik
− eik(z

′−z)

2ik
=
−1
2ik

(
eik(z

′−z) − eik|z
′−z|

)
.

(3.6)

Consequently, it is identical to the Green’s function (3.1) for z′ < a (i.e., to equation (14) of Weglein
et al. (2011b), the Green’s function with the same vanishing Dirichlet and Neumann boundary
conditions at the deeper boundary for a whole-space homogeneous medium). In other words, the
reflector below the source will not change the values of the Green’s function with vanishing Dirichlet
and Neumann boundary conditions at the deeper boundary.
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Figure 4: The configuration of the experiment with the source below a single reflector.

4 GDN
0 for a model with a single reflector

4.1 Case I: source above the reflector

This case had been derived and documented in detail in Weglein et al. (2011b). The only additional
contribution we have in this article is the density term in the amplitude of the Green’s function:

GDN
0 (z, z′, ω) =

ρ0
2ik

(
eik|z−z

′| − e−ik(z−z
′)
)
. (4.1)

In the equation above, the density at the source location is the extra contribution in extending the
Green’s function in equation (39) of Weglein et al. (2011b). A similar density term can be found in
the Green’s function of Clayton and Stolt (1981).

We can also Fourier transform equation (4.1) to the time domain to have:

GDN
0 (z, z′, t) =

ρ0c0
2

(
H

[
t− z′ − z

c0

]
−H

[
t− |z

′ − z|
c0

])
. (4.2)

4.2 Case II: source below the reflector

From the previous section, if z < a, the solution is trivial since GDN
0 (z, z′, ω) = GDN

0 (z, z′, ω). It
is critical to derive GDN

0 for z > a. The physical experiment is the following (see Figure 4): The
locations of the measurement surface and the deeper surface are A and B, respectively. The depth
of the single reflector and source are a and z, respectively. The causal Green’s function with the
source located at depth z and receiver at depth z′ is denoted as G+

0 (z, z
′, ω).

If the impulsive source is below the reflector, it will produce an out-going wave ρ1eik1|z
′−z|

2ik1
in the

second medium; i.e., the Green’s function with homogeneous properties (ρ1, c1). After the out-going
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field is obtained, the reflection in the second medium and the transmission in the first medium can
be solved as a classical reflection problem, as is presented in equations (12.5) and (12.8), and the
final result is:

1

ρ1
G+

0 (z, z
′, ω) =

{
1−R
2ik1

eik1(z−a)eik(a−z
′) if (z′ < a)

1
2ik1

(
eik1|z

′−z| −Reik1(z
′+z−2a)

)
if (z′ > a)

, (4.3)

where R = ρ1c1−ρ0c0
ρ1c1+ρ0c0

is the reflection coefficient of a plane wave incident from above. Since B is the
depth of the deeper surface, for our wave-field prediction purpose we have A < z < B. Consequently,
G+

0 will produce two packets of down-going waves at the deeper surface B: ρ1eik1(B−z)

2ik1
(the direct

wave or the homogeneous propagation as if the entire space is filled with the second medium) and
−Rρ1eik1(B+z−2a)

2ik1
(the reflection wave‖).

For z′ > z, G+
0 can be expressed as:

eik1|z
′−z| −Reik1(z

′+z−2a)

2ik1/ρ1
=

eik1(z
′−z) −Reik1(z

′+z−2a)

2ik1/ρ1
=

e−ik1z −Reik1(z−2a)

2ik1/ρ1
eik1z

′
.

In order to have a Green’s function that vanishes at the deeper boundary z′ = B, we can introduce
a homogeneous solution that cancels with the causal solution. As a result, the desired homogeneous
solution, denoted as φ(z, z′, ω), must be

φ(z, z′, ω) =
Reik1(z−2a) − e−ik1z

2ik1/ρ1
eik1z

′
if (z′ > z). (4.4)

We denote the amplitude factor of the down-going wave eik1z
′ as F1(z, ω) =

e−ik1z−Reik1(z−2a)

2ik1/ρ1
. Our

objective is to produce a homogeneous propagation that will produce −F1(z, ω)e
ik1z′ for z′ > z that

cancels G+
0 at the deeper boundary z′ = B. Since the actual medium has a single invariant velocity

c1 for z′ > a and there is no velocity change at the source location, z′ = z, this implies that it is
also the solution for a broader region (i.e., z′ > a):

φ(z, z′, ω) =
Reik1(z−2a) − e−ik1z

2ik1/ρ1
eik1z

′
if (z′ > a). (4.5)

With the solution for z′ > a, the wave propagation for z′ < a can be unambiguously solved via
boundary conditions detailed in Appendix A. The medium’s properties are listed in Table 1, and R is
used to denote the reflection coefficient of this model when the incident wave is coming from above:
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Depth Range Velocity Density
(−∞, a) c0 ρ0
(a,∞) c1 ρ1

Table 1: The properties of an acoustic medium with a single reflector at depth a.

R = ρ1c1−ρ0c0
ρ1c1+ρ0c0

; other coefficients such as the reflection coefficient from below, and the transmission
coefficients, can all be easily expressed as a simple function∗∗ of R.

According to the classical reflection problem listed in Appendix A, the incident wave (i.e., for
z′ < a) intended to produce the transmission packet in equation (4.5) for the purpose of canceling
the boundary values of G+

0 at the deeper boundary z′ = B is:

−F1

1 +R
eik1aeik(z

′−a) =
Reik1(z−a) − eik1(a−z)

2ik1(1 +R)/ρ1
eik(z

′−a). (4.6)

However, the above incident wave will produce a corresponding reflection wave in the upper medium
(i.e., z′ < a) as a byproduct:

−F1R

1 +R
eik1aeik(a−z

′) =
R2eik1(z−a) −Reik1(a−z)

2ik1(1 +R)/ρ1
eik(a−z

′). (4.7)

We can summarize the solution below the reflector in equation (4.5) and the solution above the
reflector in equations (4.6) and (4.7) to have:

φ(z, z′, ω) =

{
Reik1(z−a)−eik1(a−z)

2ik1(1+R)/ρ1
eik(z

′−a) + R2eik1(z−a)−Reik1(a−z)

2ik1(1+R)/ρ1
eik(a−z

′) if (z′ < a)
Reik1(z−2a)−e−ik1z

2ik1/ρ1
eik1z

′
if (z′ > a)

. (4.8)

Combining equations (4.3) and (4.8), the Green’s function that satisfies the Dirichlet and Neumann
boundary conditions at the deeper boundary z′ = B is:

1

ρ1
GDN

0 (z, z′, ω) =
G+

0 (z, z
′, ω) + φ(z, z′, ω)

ρ1
=

⎧
⎪⎨
⎪⎩

1−R
2ik1

eik1(z−a)eik(a−z
′)+

Reik1(z−a)−eik1(a−z)

2ik1(1+R) eik(z
′−a) + R2eik1(z−a)−Reik1(a−z)

2ik1(1+R) eik(a−z
′) if (z′ < a)

eik1|z′−z|−Reik1(z
′+z−2a)

2ik1
+ Reik1(z−2a)−e−ik1z

2ik1
eik1z

′
if (z′ > a)

.

(4.9)

‖The amplitude factor is −R instead of R since the incident wave comes from the second medium (below) rather
than the first medium (above).
∗∗For example, the reflection coefficient from below is −R, and the transmission coefficients from above and below

are 1 +R and 1−R, respectively.
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The above expression can be simplified as:

GDN
0 (z, z′, ω) =

⎧
⎨
⎩

Reik1(z−a)−eik1(a−z)

2ik1(1+R)/ρ1
eik(z

′−a) + eik1(z−a)−Reik1(a−z)

2ik1(1+R)/ρ1
eik(a−z

′) if (z′ < a)

eik1|z′−z|−eik1(z′−z)

2ik1/ρ1
if (z′ > a)

. (4.10)

The procedure above is shown in Figure 5 in the time domain.

Let us study the vanishing property of GDN
0 with the source location z below a reflector. If z′ > z

(which automatically implies the solution in equation (4.10), since the source is located below the
reflector: z > a), we have:

GDN
0 (z, z′, ω) =

eik1|z
′−z| − eik1(z

′−z)

2ik1/ρ1
=

eik1(z
′−z) − eik1(z

′−z)

2ik1/ρ1
≡ 0 (4.11)

According to equation (4.11), GDN
0 for z > a also vanishes in the half-space below the source, which

includes z′ = B, a behavior demonstrated by GDN
0 for z < a as well.

Following the argument for GDN
0 for z < a, it is obvious that any variations of c(z′) below the

source location z will not change the value of the Green’s function with double vanishing boundary
conditions. A very important consequence is that any heterogeneity below the prediction point
(i.e., the source depth z) will not have any impact on GDN

0 and consequently will not affect the
imaging result at z. It is worthwhile to remind the reader that this fact had already been in many
publications − for example in “Finite Volume Model for Migration” from Weglein et al. (2011a).

In summary, combining equations (4.1) and (4.10), the frequency domain solution for GDN
0 with a

single reflector located at depth a is:

GDN
0 (z, z′, ω) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ0
2ik

(
eik|z−z

′| − eik(z
′−z)

)
if (z < a),

ρ1
2ik1

(
eik1|z

′−z| − eik1(z
′−z)

)
if (a < z′ and a < z),

Reik1(z−a)−eik1(a−z)

2ik1(1+R)/ρ1
eik(z

′−a)+
eik1(z−a)−Reik1(a−z)

2ik1(1+R)/ρ1
eik(a−z

′) if (z′ < a and a < z).

(4.12)

It can be transformed into the time domain via equation (1.1) to have:
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GDN
0 (z, z′, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0c0
2

(
H
[
t+ z−z′

c0

]
−H

[
t− |z−z′|

c0

])
if (z < a),

ρ1c1
2

(
H
[
t+ z−z′

c1

]
−H

[
t− |z−z′|

c1

])
if (a < z′ and a < z),

ρ1c1
2(1+R)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H
(
t+ z′−a

c0
+ z−a

c1

)

−H
(
t− z′−a

c0
− z−a

c1

)

+RH
(
t+ z′−a

c0
− z−a

c1

)

−RH
(
t− z′−a

c0
+ z−a

c1

)

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

if (z′ < a and a < z).

(4.13)

Another important property of GDN
0 for a model with a single reflector is that, from both equa-

tions (4.12) and (4.13), GDN
0 for a < z and for a < z′ is the same even if the single reflector does not

exist††. Note that in this case the additional heterogeneity (i.e., the single reflector) is outside the
interval (z′, z), and it is obvious that the geologic complexity beyond the (z′, z) zone will not affect
the value of GDN

0 .

The independence of GDN
0 from the heterogeneity outside the interval (z′, z) agrees with the WKBJ

Green’s function. The WKBJ Green’s function is derived as an approximate solution for a smoothed
medium and is not a function of any heterogeneity outside (z′, z).

In the procedure to construct GDN
0 , we start from the causal solution in equation (4.3). Here the

last term is a reflection resulting from the up-going wave produced by the source. Note that this
term is canceled after adding the homogeneous solution φ in equation (4.8). Consequently, their
sum GDN

0 contains no reflection generated from the source.

It is well-known that reflections are omitted in both the WKBJ approximation and in many cur-
rent seismic imaging procedures that prefer a smooth and reflectionless velocity model. In many
current imaging algorithms, the velocity field is smoothed to minimize the reflections caused by
the velocity, whereas in the logic for Green’s function with double vanishing boundary conditions,
the discontinuous model is kept intact. Nevertheless, both approaches yield the same reflectionless
conclusion.

The procedure in this section to calculate GDN
0 for a simple single-reflector model is already very

tedious. The major difficulty is to find a homogeneous solution φ that will cancel both the downward
reflection originating from the source and the downward propagation of the source below the source
location. For more complicated geological models, the procedure will be much more demanding.

Fortunately, a much simpler procedure, easily generalizable to more complicated models, can be
derived from the fact that the values of GDN

0 are not affected by any heterogeneity outside the
interval (z′, z).

††This solution is the same as in equation (3.1) if (1) c0 is replaced by c1, and (2) the trivial density contribution
at the source ρ1 is added. And consequently this solution is equivalent with GDN

0 with a homogeneous velocity c1 and
constant density ρ1 that contains no reflector.
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Figure 5: The construction of GDN
0 for a medium with one reflector (the velocities above and below

the reflector are 1500m/s and 2700m/s, respectively). The source depth is 700m and is below the
single reflector at 500m. The left panel is the causal solution G+

0 , and the middle panel shows the
homogeneous solution that cancels with the left panel below the source. The right panel results
from summing the two panels on its left and is the desired Green’s function with double vanishing
boundary conditions.
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Figure 6: The diagram for upward continuation. A reflector is located at depth a, the medium
properties above and below the reflector are (ρ1, c1) and (ρ2, c2), respectively. In this case we
assume that the wave below the reflector A2e

ik2z′ +B2e
−ik2z′ is known, the objective is to compute

the wave above the reflector A1e
ik1z′ +B1e

−ik1z′ .

5 Upward continuation procedure: wave-theory approach

In the process of calculating GDN
0 with the source below many reflectors, we start from the wave

field of the layer that contains the source. The wave field in this layer can be calculated through
equation (4.1), and can be expressed as:

Ane
iknz′ +Bne

−iknz′ ,

where the source is assumed to be in the nth-layer (with velocity cn and density ρn, respectively),
kn = ω

cn
, An = − ρn

2ikn
e−iz, Bn = ρn

2ikn
eiz. The objective is to find the wave field at the (n−1)th layer:

An−1eikn−1z′ + Bn−1e−ikn−1z′ , as shown in Figure 6. The theory is listed below. The continuity of
the wave field and its derivatives requires:

A1e
ik1a +B1e

−ik1a = A2e
ik2a +B2e

−ik2a,

ik1
ρ1

(
A1e

ik1a −B1e
−ik1a

)
=

ik2
ρ2

(
A2e

ik2a −B2e
−ik2a

)
.

(5.1)

If we define: γ = ρ1k2
ρ2k1

= ρ1c1
ρ2c2

, equation (5.1) can be written in matrix form:

(
eik1a −e−ik1a
eik1a e−ik1a

)(
A1

B1

)
=

(
γ 0
0 1

)(
eik2a −e−ik2a
eik2a e−ik2a

)(
A2

B2

)
, (5.2)

with the solution:

301



RTM M-OSRP12

(
A1

B1

)
=

1

2

(
e−ik1a e−ik1a

−eik1a eik1a

)(
γ 0
0 1

)(
eik2a −e−ik2a
eik2a e−ik2a

)(
A2

B2

)

=
1

2

(
γe−ik1a e−ik1a

−γeik1a eik1a

)(
eik2a −e−ik2a
eik2a e−ik2a

)(
A2

B2

)

=
1

2

(
(1 + γ)ei(k2−k1)a (1− γ)e−i(k1+k2)a

(1− γ)ei(k1+k2)a (1 + γ)ei(k1−k2)a

)(
A2

B2
.

) (5.3)

Since 1+γ
2 = 1

2 +
ρ1c1
2ρ2c2

= ρ2c2+ρ1c1
2ρ2c2

= 1
1+R , and

1−γ
2 = 1

2 −
ρ1c1
2ρ2c2

= ρ2c2−ρ1c1
2ρ2c2

= R
1+R , the above results

can be rewritten as:

(
A1

B1

)
=

1

1 +R

(
ei(k2−k1)a Re−i(k1+k2)a

Rei(k1+k2)a ei(k1−k2)a

)(
A2

B2

)
.

(5.4)

For example, for GDN
0 with z > a, the wave field immediately below the single reflector is

ρ1
2ik1

(
−eik1(z′−z) + eik1(z−z

′)
)
. If it is expressed in the form A2e

ik1z′ + B2e
−ik1z′ , we have A2 =

−ρ1e−ik1z

2ik1
, B2 =

ρ1eik1z

2ik1
and consequently we have:

(
A1

B1

)
=

1

1 +R

(
ei(k1−k)a Re−i(k+k1)a

Rei(k+k1)a ei(k−k1)a

)
ρ1
2ik1

(
−e−ik1z
eik1z

)

=
ρ1
2ik1

1

1 +R

( {
Reik1(z−a) − eik1(a−z)

}
e−ika{

eik1(z−a) −Reik1(a−z)
}
eika

)
.

(5.5)

From equation (5.5), we can easily produce the wave field above the reflector: A1e
ikz′ +B1e

−ikz′ =
ρ1
2ik1

{Reik1(z−a)−eik1(a−z)}eik(z′−a)+{eik1(z−a)−Reik1(a−z)}eik(a−z′)

1+R .

Compared with the previous section, the example above is a much simpler derivation of GDN
0 with

a single reflector above the source.

For example, for GDN
0 in a two-reflector model, the wave field immediately below the second reflector

is A3e
ik2z′+B3e

−ik2z′ = ρ2
2ik2

(
−eik2(z′−z) + eik2(z−z

′)
)
. It is obvious that in this case A3 = −ρ2e−ik2z

2ik2
,

B2 =
ρ2eik2z

2ik2
and consequently, we have:
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(
A2

B2

)
=

1

1 +R2

(
ei(k2−k1)a2 R2e

−i(k1+k2)a2

R2e
i(k1+k2)a2 ei(k1−k2)a2

)
ρ2
2ik2

(
−e−ik2z
eik2z

)

=
ρ2
2ik2

1

1 +R2

( {
R2e

ik2(z−a2) − eik2(a2−z)
}
e−ik1a2{

eik2(z−a2) −R2e
ik2(a2−z)} eik1a2

)
.

(5.6)

Renaming R = R1, and a = a1, the combination of equations (5.4) and (5.6) gives:

(
A1

B1

)
=

1

1 +R1

(
ei(k1−k)a1 R1e

−i(k+k1)a1

R1e
i(k+k1)a1 ei(k−k1)a1

)(
A2

B2

)

=
ρ2/(1 +R2)

2ik2(1 +R1)

(
ei(k1−k)a1 R1e

−i(k+k1)a1

R1e
i(k+k1)a1 ei(k−k1)a1

)( {
R2e

ik2(z−a2) − eik2(a2−z)
}
e−ik1a2{

eik2(z−a2) −R2e
ik2(a2−z)} eik1a2

)

=
ρ2

2ik2(1 +R1)(1 +R2)
×

( [
eik1(a1−a2)

{
R2e

ik2(z−a2) − eik2(a2−z)
}
+ eik1(a2−a1)

{
R1e

ik2(z−a2) −R1R2e
ik2(a2−z)}] e−ika1[

eik1(a1−a2)
{
R1R2e

ik2(z−a2) −R1e
ik2(a2−z)}+ eik1(a2−a1)

{
eik2(z−a2) −R2e

ik2(a2−z)}] eika1
)
.

(5.7)

If we define: λ ≡ eik2(z−a2), μ ≡ eik(z
′−a1) and ν ≡ eik1(a2−a1), the Green’s function can be expressed

as:

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
μ+

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
μ−1

2ik2(1 +R1)(1 +R2)/ρ2
(5.8)

6 Upward continuation: finite-difference approach

In order to demonstrate the general philosophy of our method, we study wave propagation in an
arbitrary acoustic medium c(z) (with only velocity variation). It can be extended to a medium with
density variation as well. First we have the equation for the causal Green’s function with source
located at depth zs:

(
∂2

∂z2
− 1

c2(z)

∂2

∂t2

)
G+

0 (z, zs, t) = δ(z − zs)δ(t). (6.1)

We then consider a homogeneous equation (without the source) in the same velocity field c(z):
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(
∂2

∂z2
− 1

c2(z)

∂2

∂t2

)
φ(z, t) = 0. (6.2)

Note that for a small positive number ε, and for z > zs + ε, the source term of equation (6.1)
vanishes: δ(z − zs)δ(t) = 0. Consequently, equation (6.1) is a homogeneous wave equation for
z > zs + ε, i.e., identical to equation (6.2).

In the aforementioned source-free region, the difference scheme (with second-order accuracy in both
space and time) is:

φm+1,n + φm−1,n − 2φm,n

(Δz)2
− 1

c2
φm,n+1 + φm,n−1 − 2φm,n

(Δt)2
= 0, (6.3)

where in the subscript, the variable m denotes the index for depth z, and the variable n denotes
the index for time t: φm,n = φ(mΔz, nΔt). If we define p

Δ
= cΔt

Δz , we have:

φm,n+1 = (2− 2p2)φm,n − φm,n−1 + p2(φm+1,n + φm−1,n), (6.4)

for forward marching in time, and

φm−1,n = (2− 2p−2)φm,n − φm+1,n + p−2(φm,n+1 + φm,n−1), (6.5)

for upward marching in depth. Since both difference schemes with second-order accuracy in equa-
tions (6.4) and (6.5) are of the same type, according to the analysis in Alford et al. (1974), equa-
tion (6.4) is stable for cΔt

Δz ≤
√
0.5, and equation (6.5) is stable for cΔt

Δz ≥
√
2.

Since the value of GDN
0 (z, z′) is completely determined by the medium in the interval (z′, z), if the

medium between z′ and z is homogeneous, we can extend the local homogeneous medium to the
entire space and we have a much simpler problem already solved in equation (14) of Weglein et al.
(2011b). In equation (6.5), the initial values are listed on the right-hand side of the formula, with
depth levels that have indices m and m+ 1, respectively. The field values for the depth level with
index m − 1 can be straightforwardly computed by using equation (6.5), and by using the values
at depth indices m − 1 and m, the field at depth index m − 2 can be likewise calculated. That
procedure is very similar to the scheme popularly implemented in finite-difference forward-modeling
algorithms that march forward in time.

The two levels of initial field values are from equation (14) of Weglein et al. (2011b), which satisfies
the double vanishing Green’s function at the lower boundary. These initial field values will not be
changed by the scheme in equation (6.5); all the complexity to match the boundary conditions at
the current level is carried on to the next depth level with index m − 1. It guarantees that both
Dirichlet and Neumann boundary conditions at z′ = B are satisfied.

Note that in equation (6.5), the velocity field c is a function of depth and can be arbitrary, enabling
the flexibility of the scheme for a medium with any spatially varying velocities.
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Figure 7: GDN
0 (z = 1100m, z′, t) for a homogeneous medium with velocity 1500m/s. The left panel

is generated through the finite-difference scheme from equation (6.5). The middle panel is computed
from the analytic method and is presented in equation (4.1). The difference between the left and
middle panels is shown in the right panel.

7 GDN
0 for a model with two reflectors

The GDN
0 in this case is for the medium listed in Table 2. The final result is:

GDN
0 (z, z′, ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0
2ik

(
eik|z−z

′| − eik(z
′−z)

)
if (z < a1)

ρ1
2ik1

(
eik1|z

′−z| − eik1(z
′−z)

)
if (z′ > a1 and a1 < z < a2)

R1eik1(z−a1)−eik1(a1−z)

2ik1(1+R1)/ρ1
eik1(z

′−a1)+
eik1(z−a1)−R1eik1(a1−z)

2ik1(1+R1)/ρ1
eik1(a1−z

′) if (z′ < a1 and a1 < z < a2),
ρ2
2ik2

(
eik2|z−z

′| − eik2(z
′−z)

)
if (a2 < z′ and a2 < z),

R2eik2(z−a2)−eik2(a2−z)

2ik1(1+R2)/ρ2
eik1(z

′−a2)+
eik2(z−a2)−R2eik2(a2−z)

2ik1(1+R2)/ρ2
eik1(a2−z

′) if (a1 < z′ < a2 and a2 < z),

ρ2
2i(1+R1)(1+R2)

⎧
⎪⎪⎨
⎪⎪⎩

ν−1(R2λ− λ−1)μ
+R1ν(λ−R2λ

−1)μ
+R1ν

−1(R2λ− λ−1)μ−1

+ν(λ−R2λ
−1)μ−1

⎫
⎪⎪⎬
⎪⎪⎭

if (a2 < z and z′ < a1).

(7.1)
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Figure 8: GDN
0 (z = 1100m, z′, t) for a medium with a reflector at a depth of 600m. The velocities

above and below the reflector are 1500m/s and 2700m/s, respectively. The left panel is generated
through the finite-difference scheme from equation (6.5). The middle panel is computed from the
analytic method and is presented in equation (4.10). The difference between the left and middle
panels is shown in the right panel.
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Figure 9: GDN
0 (z = 1100m, z′, t) for a medium with two reflectors, located at depths of 300m

and 600m, respectively. The medium velocities are (from top to bottom) 1500m/s, 2700m/s, and
1500m/s. The left panel is generated through the finite-difference scheme from equation (6.5).
The middle panel is computed from the analytic method and is presented in equation (7.1). The
difference between the left and middle panels is shown in the right panel.
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In the equation above: λ ≡ eik2(z−a2), μ ≡ eik(z
′−a1), and ν ≡ eik1(a2−a1). The details of the above

result are listed below:

• Case 1, the source is above the first reflector (i.e., z < a1): the solution in this case is essentially
for a whole-space homogeneous medium with velocity c0 and density ρ0. The Green’s function
in this case is the simplest (identical to that for equation (4.1)) and has only two events.

• Case 2, the source is between the first and second reflectors and the receiver is below the first
reflector (i.e., a1 < z < a2 and a1 < z′): the solution in this case is exactly the same as that
for a simpler medium that lacks the shallower reflector. It is obtained from equation (4.1),
with (c0, ρ0) being replaced by (c1, ρ1), or the second case of equation (4.10). The GDN

0 in this
case has two events.

• Case 3, the source is between the first and second reflectors and the receiver is above the first
reflector (i.e., a1 < z < a2 and z′a1. It is the first case of equation (4.10). The GDN

0 in this
case has four events).

• Case 4, the source and receiver are both below the second reflector (i.e., a2 < z and a2 < z′):
the solution in this case is exactly the same as that for a simpler medium that lacks the
shallower reflectors. It is obtained from equation (4.1), with (c0, ρ0) being replaced by (c2, ρ2).

• Case 5, the source is below the second reflector and the receiver is between the first and second
reflectors (i.e., a2 < z and a1 < z′ < a2). It is obtained from equation (4.10) with (c1, ρ1)
being replaced by (c2, ρ2) and with (c0, ρ0) being replaced by (c1, ρ1). There are four events
in this situation.

• Case 6, the source is below the second reflector and the receiver is above the first reflector
(i.e., a2 < z and z′ < a1): this is the most complicated situation and contains eight events. It
is calculated by using equation (5.7).

8 Wave-field prediction with the RTM Green’s function

In this section, we demonstrate the behavior of the Green’s function that satisfies both Dirichlet
and Neumann boundary conditions at the deeper boundary. The study consists of three geological
models with progressive complexity.

8.1 Example I: homogeneous case

This example had already been documented in Appendix A of Weglein et al. (2011b) for an acoustic
medium without density variation; it is given here to make a smooth transition into more compli-
cated examples and to demonstrate the impact of density in the algorithms. With k = ω/c0, the
general solution of a wave propagating in the whole space homogeneous medium with velocity c0 is:
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P (z′, ω) = αeikz
′
+ βe−ikz

′
, (8.1)

where α and β can be any value. At the measurement surface z′ = A, we will detect the wave field
and its partial derivative over z′ as follows:

P (z′)
∣∣
z′=A = αeikA + βe−ikA,

∂P (z′, ω)
∂z′

∣∣∣∣
z′=A

= ik
(
αeikA − βe−ikA

)
.

(8.2)

From equation (4.1), the values of the Green’s function needed on the boundary z′ = A are:

GDN
0 (z, z′, ω)

∣∣
z′=A =

ρ(z)

2ik

[
eik|z−z

′| − eik(z
′−z)

]
z′=A

=
ρ0
2ik

[
eik|z−A| − eik(A−z)

]
,

∂

∂z′
GDN

0 (z, z′, ω)

∣∣∣∣
z′=A

=
ρ(z)

2

[
sgn(z′ − z)eik|z−z

′| − eik(z
′−z)

]
z′=A

=
ρ0
2

[
sgn(A− z)eik|z−A| − eik(A−z)

]
.

(8.3)

Using the boundary values of the wave field P and Green’s operator GDN
0 at the boundary z′ = A

(in equations (8.2) and (8.3)), we can predict the wave field as follows,

P (z, ω) =
1

ρ(z′)

[
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

]z′=B

z′=A

= − 1

ρ0

[
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

]

z′=A

= −αeikA + βe−ikA

2

[
sgn(A− z)eik|z−A| − eik(A−z)

]

+
αeikA − βe−ikA

2

[
eik|z−A| − eik(A−z)

]
.

(8.4)

For the purpose of predicting the wave field below the measurement surface z′ = A, we obviously
have the situation z > A. Consequently, the equation above can be simplified as,

P (z, ω) =
αeikA + βe−ikA

2

[
eik(z−A) + eik(A−z)

]
+

αeikA − βe−ikA

2

[
eik(z−A) − eik(A−z)

]

=αeikAeik(z−A) + βe−ikAeik(A−z)

=αeikz + βe−ikz.

(8.5)
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Figure 10: The incident, reflection, and transmission waves in example II. Here k = ω/c0, k1 = ω/c1,
and a is the depth of the single reflector. R = (ρ1c1−ρ0c0)/(ρ1c1+ρ0c0) is the reflection coefficient
for a down-going incident plane wave. eikz

′ is the incident wave. Reik(2a−z
′) is the reflection data.

(1 +R)eikaeik1(z
′−a) is the transmission wave.

The above expression is exactly the actual wave field that we assumed in equation (8.1). In other
words, the original wave field, with both up-going and down-going waves, is perfectly reconstructed
at an arbitrary depth.

It would sound irrational that we can also perfectly predict the wave field if there are reflectors
below z. However, according to d’Alembert’s formula for a 1D wave equation for any interval,
the introduction of additional reflectors into the homogeneous reference medium below z will not
alter the possible type of waves between a and z, which remains homogeneous: αeikz + βe−ikz,
where α and β are arbitrary numbers. The examples of using this Green’s function derived from
homogeneous media for nonhomogeneous velocity models can be found in Examples II and III.

8.2 Example II: a single reflector

With the models listed in Table 1, an incident plane wave eikz′ will produce various waves, as shown
in Figure 10. Obviously the wave at the measurement surface is:

P (z′ = A, ω) = eikA +Reik(2a−A),

P (z′ = A, ω)
∂z′

∣∣∣∣
z′=A

= ik
(
eikA −Reik(2a−A)

)
.

(8.6)

First let us consider the simpler situation, predicting the wave field above the reflector: P (z, ω)
where z < a. The Green’s function can be found in equation (4.1). Note that in this case, we use a
reflectionless Green’s function to downward continue a reflection.
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GDN
0 (z, z′, ω)

∣∣
z′=A =

ρ(z)

2ik

[
eik|z−z

′| − eik(z
′−z)

]
z′=A

=
ρ0
2ik

[
eik(z−A) − eik(A−z)

]
,

∂

∂z′
GDN

0 (z, z′, ω)

∣∣∣∣
z′=A

=
ρ0
2

[
−eik(z−A) − eik(A−z)

]
.

(8.7)

In the equation above, we take advantage of the fact that sgn(A − z) = −1. With the boundary
values from equations (8.6) and (8.7), we can predict the wave field at arbitrary location z using
equation (2.5):

P (z, ω) =
eikA +Reik(2a−A)

2

[
eik(z−A) + eik(A−z)

]
+

eikA −Reik(2a−A)

2

[
eik(z−A) − eik(A−z)

]

=eikAeik(z−A) +Reik(2a−A)eik(A−z)

=eikz +Reik(2a−z).

(8.8)

Next let us predict the wave field below the reflector: P (z, ω), where z > a. The value of Green’s
function at the measurement surface, needed in equation (2.5), can be found in equation (4.10) and
is given as:

GDN
0 (z, z′, ω)

∣∣
z′=A =

ρ1
2ik1

{
Rλ− λ−1

1 +R
μ+

λ−Rλ−1

1 +R
μ−1

}
,

∂

∂z′
GDN

0 (z, z′, ω)

∣∣∣∣
z′=A

=
ρ1k

2k1

{
Rλ− λ−1

1 +R
μ− λ−Rλ−1

1 +R
μ−1

}
,

(8.9)

where λ ≡ eik1(z−a) and μ ≡ eik(A−a). With all the terms in equations (8.6) and (8.9), we can
predict the wave field below the reflector using equation (2.5):

311



RTM M-OSRP12

Depth Range Velocity Density
(−∞, a1) c0 ρ0
(a1, a2) c1 ρ1
(a2,∞) c1 ρ1

Table 2: The properties of an acoustic medium with two reflectors, at depth a1 and a2.

P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

}∣∣∣∣
z′=B

z′=A

=
1

ρ(z′)

[
GDN

0 (z, z′, ω)
∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

]

z′=A

=
ρ1k

ρ0k1

{
λ−Rλ−1

1 +R
μ−1eikA − Rλ− λ−1

1 +R
μReik(2a−A)

}

=
ρ1k

ρ0k1
eika

{
λ−Rλ−1

1 +R
− R2λ−Rλ−1

1 +R

}

=
ρ1c1

ρ0c0(1 +R)
eika

{[
1−R2

]
λ+ [R−R]λ−1

}

=
ρ1c1
ρ0c0

(1−R)λeika =
ρ1c1
ρ0c0

2ρ0c0
ρ1c1 + ρ0c0

λeika =
2ρ1c1

ρ1c1 + ρ0c0
λeika

= (R+ 1)λeika = (1 +R)eikaeik1(z−a).

(8.10)

In the derivation above, we take advantage of the fact that μ · eik(2a−A) = μ−1eikA = eika. The
final result above is exactly the transmission wave in the second medium illustrated in Figure 10.
Note that the down-going incident wave and the up-going reflection data act together to produce
the down-going transmission data in the second medium, with correct amplitude and phase.

In the GDN
0 expression in equation (8.9), the λ terms are for the down-going wave, and the λ−1 terms

are for the up-going wave. In other words, both down-going and up-going energy is present in the
formalism. However, the action of the data cancels the up-going terms (i.e., the terms containing
λ−1) in the second medium, as it should.

8.3 Example III: a model with two reflectors: reconstruction of internal multi-
ples in the subsurface

As was chosen in Example II, the incident wave here is eikz
′ , and the reflection data contain two

primaries, corresponding to each reflector, and an infinite number of internal multiples. The mea-
surement at z′ = A is:
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P (z′ = A, ω) = eikA +R1e
ik(2a1−A)

+
(
1−R2

1

)
eik(2a1−A)

∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1],

1

ik

P (z′ = A, ω)
∂z′

∣∣∣∣
z′=A

= eikA −R1e
ik(2a1−A)

−
(
1−R2

1

)
eik(2a1−A)

∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1],

(8.11)

where R1 = ρ1c1−ρ0c0
ρ1c1+ρ0c0

and R2 = ρ2c2−ρ1c1
ρ2c2+ρ1c1

are the reflection coefficients for the first and second
reflectors, respectively. Since 1 + R1 and 1− R1 are the transmission coefficients for a down-going
and an up-going wave through the first reflector, respectively, 1−R2

1 = (1+R1)(1−R1) is the total
transmission loss for seismic energy passing through the first reflector. To predict the wave field in
the second medium (i.e., a1 < z′ < a2), the Green’s function can be found in equation (4.12) and
is:

GDN
0 (z, z′, ω)

∣∣
z′=A =

ρ1
2ik1

{
R1λ− λ−1

1 +R1
μ+

λ−R1λ
−1

1 +R1
μ−1

}
,

∂

∂z′
GDN

0 (z, z′, ω)

∣∣∣∣
z′=A

=
ρ1k

2k1

{
R1λ− λ−1

1 +R1
μ− λ−R1λ

−1

1 +R1
μ−1

}
,

(8.12)

where in the equation above λ ≡ eik1(z−a1) and μ ≡ eik(A−a1). With all the terms in equations (8.11)
and (9.34), we can predict the wave field below the reflector using equation (2.5):
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P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

}∣∣∣∣
z′=B

z′=A

=
1

ρ(z′)

[
GDN

0 (z, z′, ω)
∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

]

z′=A

=
ρ1k

ρ0k1

{
λ−R1λ

−1

1 +R1
μ−1eikA − R1λ− λ−1

1 +R1
μR1e

ik(2a1−A)

}

− ρ1k

ρ0k1

{
R1λ− λ−1

1 +R1
μ
(
1−R2

1

)
eik(2a1−A)

∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1]

}

=
ρ1k

ρ0k1
eika1

{
λ−R1λ

−1

1 +R1
− R2

1λ−R1λ
−1

1 +R1

}

− eika1
ρ1k

ρ0k1
(1−R1)

{
R1λ− λ−1

} ∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1]

=
ρ1c1

ρ0c0(1 +R1)
eika1

{[
1−R2

1

]
λ+ [R1 −R1]λ

−1}

+ eika1
ρ1k

ρ0k1
(1−R1)

{
eik1(a1−z) −R1e

ik1(z−a1)
} ∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1].

=
ρ1c1
ρ0c0

(1−R1)λe
ika1

+ eika1
ρ1k

ρ0k1
(1−R1)

{
eik1(a1−z) −R1e

ik1(z−a1)
} ∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1].

= (1 +R1)e
ika1eik1(z−a1)

+ eika1
ρ1k

ρ0k1
(1−R1)

{
eik1(a1−z) −R1e

ik1(z−a1)
} ∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1].

(8.13)

In the derivation above we take advantage of the fact that μeik(2a1−A) = eika1 . Also, many simplifi-
cations are detailed in the process of deriving equation (8.10). Since ρ1k

ρ0k1
(1−R1) =

ρ1c1
ρ0c0

2ρ0c0
ρ1c1+ρ0c0

=
2ρ1c1

ρ1c1+ρ0c0
= 1 +R1, the expression above can be simplified as:

P (z, ω) = (1 +R1)e
ika1eik1(z−a1)

+ eika1(1 +R1)
∞∑

n=0

(−1)nRn
1R

n+1
2 eik1[(2n+2)a2−(2n+1)a1−z]

+ eika1(1 +R1)

∞∑

n=0

(−1)n+1Rn+1
1 Rn+1

2 eik1[z+(2n+2)a2−(2n+3)a1].

(8.14)
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It is very interesting to look each term of the expression above.

• (1 +R1)e
ika1eik1(z−a1) is the down-going wave straight from the source.

• For the simplest case, n = 0, the results are:

eika1(1 +R1)R2e
ik1(2a2−a1−z) − eika1(1 +R1)R1R2e

ik1(z+2a2−3a1),

where the first term is the up-going primary reflected from the second reflector, and the second
term is the down-going leg of the first-order internal multiple.

• For the case n = 1, we have:

−eika1(1 +R1)R1R
2
2e

ik1(4a2−3a1−z) + eika1(1 +R1)R
2
1R

2
2e

ik1(z+4a2−5a1),

where the first term is the up-going leg of the first-order internal multiple, and the second
term is the down-going leg of the second-order internal multiple.

The details to predict the wave field below the second reflector are as follows:

GDN
0 (z, z′, ω)

∣∣
z′=A =

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
μ+

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
μ−1

2ik2(1 +R1)(1 +R2)/ρ2
,

∂

∂z′
GDN

0 (z, z′, ω)

∣∣∣∣
z′=A

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
μ−

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
μ−1

2k2(1 +R1)(1 +R2)/(kρ2)
,

(8.15)

where λ ≡ eik2(z−a2), μ ≡ eik(A−a1), and ν ≡ eik1(a2−a1). The wave field from Example III (i.e.,
equation (8.11)) can be rewritten as:

P (z′ = A, ω) = eikA +R1e
ik(2a1−A)

+
(
1−R2

1

)
eik(2a1−A)

∞∑

n=0

(−1)nRn
1R

n+1
2 ν2n+2,

1

ik

P (z′ = A, ω)
∂z′

∣∣∣∣
z′=A

= eikA −R1e
ik(2a1−A)

−
(
1−R2

1

)
eik(2a1−A)

∞∑

n=0

(−1)nRn
1R

n+1
2 ν2n+2.

(8.16)

After obtaining the values of the Green’s function and wave field at the shallower boundary, we can
use the Green’s theorem of equation (2.5), with input from equations (8.15) and (8.16), to predict
the wave field below the second reflector:
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P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

}∣∣∣∣
z′=B

z′=A

=
1

ρ(z′)

[
GDN

0 (z, z′, ω)
∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

]

z′=A

=
ρ2k

ρ0k2
eika1

R1ν
−1(R2λ− λ−1) + ν(λ−R2λ

−1)
(1 +R1)(1 +R2)

− ρ2k

ρ0k2
eika1R1

ν−1(R2λ− λ−1) +R1ν(λ−R2λ
−1)

(1 +R1)(1 +R2)

− ρ2k

ρ0k2
eika1(1−R2

1)
∞∑

n=0

(−1)nRn
1R

n+1
2 ν2n+2 ν

−1(R2λ− λ−1) +R1ν(λ−R2λ
−1)

(1 +R1)(1 +R2)
.

(8.17)

Since ρ2k
ρ0k2

= ρ2c2
ρ0c0

= ρ1c1
ρ0c0

ρ2c2
ρ1c1

= 1+R1
1−R1

1+R2
1−R2

, the equation above can be simplified as:

P (z, ω) =
eika1

(1−R1)(1−R2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
R1R2ν

−1 + ν
]
λ −

[
R1ν

−1 +R2ν
]
λ−1

−
[
R1R2ν

−1 +R2
1ν
]
λ +

[
R1ν

−1 +R2
1R2ν

]
λ−1

− (1−R2
1)λ

∞∑

n=0

(−1)n
[
Rn

1R
n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]

+ (1−R2
1)λ

−1
∞∑

n=0

(−1)n
[
Rn

1R
n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.18)

Since
∞∑

n=0

(−1)n
[
Rn

1R
n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]
= R2

2ν + (1−R2
2)

∞∑

n=0

(−1)nRn+1
1 Rn+1

2 ν2n+3, (8.19)

and

∞∑

n=0

(−1)n
[
Rn

1R
n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
= R2ν, (8.20)

equation (9.31) can be simplified as follows:
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P (z, ω) =
eika1(1−R2

1)ν

(1−R1)(1−R2)

(
λ−R2λ

−1 −R2
2λ+R2λ

−1 − (1−R2
2)λ

∞∑

n=0

(−1)nRn+1
1 Rn+1

2 ν2n+2

)

=
eika1(1−R2

1)(1−R2
2)

(1−R1)(1−R2)
λ

∞∑

n=0

(−1)nRn
1R

n
2ν

2n+1

= (1 +R1)(1 +R2)e
ika1eik2(z−a2)

∞∑

n=0

(−1)nRn
1R

n
2e

ik1(2n+1)(a2−a1).

In the derivation above, we rewrite the trivial quantity 1 as the special case of (−1)nRn
1R

n
2ν

2n with
n = 0. The expression above is exactly the wave field in the deepest layer: only the down-going
wave is present with correct amplitude; the up-going waves cancel each other, as actually happened
in the subsurface.

9 Downward continuation of both source and receiver

The original Green’s theorem in this report is derived to downward continue the wave field (i.e.,
receivers) to the subsurface over a source-free region. It can also be used to downward continue the
sources down to the subsurface by taking advantage of reciprocity: the recording is the same after
the source and receiver locations are exchanged.

Assuming we have data on the measurement surface: D(zg, zs) (its ω dependency is ignored), we
can use GDN

0 (z, zg) to downward continue it from zg to the target depth z:

D (z, zs) =
1

ρ(zg)

{
∂D (zg, zs)

∂zg
GDN

0 (z, zg)−D (zg, zs)
∂GDN

0 (z, zg)

∂zg

}
. (9.1)

Taking the ∂
∂zs

operation on equation (9.1), we have a similar procedure to downward continue
D(zg ,zs)

∂zs
to the subsurface:

∂D (z, zs)

∂zs
=

1

ρ(zg)

{
∂2D (zg, zs)

∂zg∂zs
GDN

0 (z, zg)−
∂D (zg, zs)

∂zs

∂GDN
0 (z, zg)

∂zg

}
. (9.2)

With equations (9.1) and (9.2), we downward continue the data D and its partial derivative over
zs to the subsurface location z. According to reciprocity, D (z, zs) = E (zs, z), where E (zs, z) is
resulted from exchanging the source and receiver locations in the experiment to generate D at the
subsurface. The imaginary data E (zs, z) can be considered as the recording of receiver at zs for a
source located at z.
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For this imaginary experiment, the source is located at depth z, according to the Green’s theorem
which is derived for a source-free region, we can downward continue the recording at zs to any depth
Z ≤ z.

In seismic migration, we downward continue E (zs, z) to the same subsurface depth z withGDN
0 (z, zs)

to have an experiment with coincident source and receiver:

E (z, z) =
1

ρ(zs)

{
∂E (zs, z)

∂zs
GDN

0 (z, zs)− E (zs, z)
∂GDN

0 (z, zs)

∂zs

}
,

=
1

ρ(zs)

{
∂D (z, zs)

∂zs
GDN

0 (z, zs)−D (z, zs)
∂GDN

0 (z, zs)

∂zs

}
.

(9.3)

With the value of D (z, zs) and
∂D(z,zs)

∂zs
in equations (9.2) and (9.1), we can simplify equation (9.3)

as follows:

ρ(zg)ρ(zs)E (z, z) = D (zg, zs)
∂GDN

0 (z, zg)

∂zg

∂GDN
0 (z, zs)

∂zs
− ∂D (zg, zs)

∂zs

∂GDN
0 (z, zg)

∂zg
GDN

0 (z, zs)

+
∂2D (zg, zs)

∂zg∂zs
GDN

0 (z, zg)G
DN
0 (z, zs)−

∂D (zg, zs)

∂zg

∂GDN
0 (z, zs)

∂zs
GDN

0 (z, zg) .

(9.4)

If the zs < zg and there is no heterogeneity above zs, the ∂
∂zs

operation on D(zg, zs) is equivalent
to multiplying −ik, in this case, equation (9.5) can be simplified further:

E (z, z) = −
∂GDN

0 (z,zs)
∂zs

+ ikGDN
0 (z, zs)

ρ(zs)
D(z, zs).

As an example, the data in a 2-reflector model (with an ideal impulsive source located at zs, the
depth of receiver is zg > zs, the depth of reflector are a1 and a2, respectively) can be expressed as:

D(zg, zs) =
ρ0
2ik

{
eik(zg−zs) +R1e

ik(2a1−zg−zs)
}

+
ρ0
2ik

{
(
1−R2

1

)
eik(2a1−zg−zs)

∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1]

}
.

(9.5)
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Figure 11: The history of various events in equation (9.5).

If we define x = eikzs , y = eikzg , σ = eikz, β =
∞∑
n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1], and α =

eik(2a1)
(
R1 + (1−R2

1)β
)
, the data can be expressed as:

D(zg, zs) =
ρ0x

−1

2ik

{
y + αy−1

}
,

∂D(zg, zs)

∂zg
=

ρ0
2
x−1

{
y − αy−1

}
,

∂D(zg, zs)

∂zs
= −ρ0

2
x−1

{
y + αy−1

}
,

∂2D(zg, zs)

∂zg∂zs
=

ρ0k

2i
x−1

{
y − αy−1

}
.

(9.6)

9.1 Above the first reflector

For z < a1, the boundary values of the Green’s function are:
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GDN
0 (z, zg) = ρ0

eik(z−zg)−eik(zg−z)

2ik = ρ0
σy−1−σ−1y

2ik ,

GDN
0 (z, zs) = ρ0

σx−1−σ−1x
2ik ,

∂GDN
0 (z,zs)
∂zg

= ρ0
σy−1+σ−1y

−2 ,
∂GDN

0 (z,zs)
∂zs

= ρ0
σx−1+σ−1x

−2 .

(9.7)

We have:

D(z, zs) =
GDN

0 (z, zg)
∂D(zg ,zs)

∂zg
− ∂GDN

0 (z,zg)
∂zg

D (zg, zs)

ρ(zg)

=
ρ0x

−1

4ik

(
σ + ασ−1 − σ−1y2 − ασy−2

)
+

ρ0x
−1

4ik

(
σ + ασ−1 + σ−1y2 + ασy−2

)

=
ρ0x

−1

2ik

(
σ + ασ−1

)
,

(9.8)

and,

−1
ρ(zs)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
=

σx−1 + σ−1x
2

− σx−1 + σ−1x
2

= σ−1x. (9.9)

And consequently, we have:

E(z, z) = − 1

ρ(s)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
D(z, zs) =

1 + ασ−2

2ik/ρ0

=
ρ0
2ik

{
1 + eik(2a1−2z)

(
R1 + (1−R2

1)

∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1]

)}
.

(9.10)

The result above can be Fourier transformed into the time domain to have:

E(z, z, t) = −ρ0c0
2

⎧
⎪⎨
⎪⎩

H(t) +R1H
(
t− 2a1−2z

c0

)

+(1−R2
1)

∞∑
n=0

(−1)nRn
1R

n+1
2 H

(
t− 2a1−2z

c0
− (2n+2)(a2−a1)

c1

)

⎫
⎪⎬
⎪⎭

. (9.11)

The terms in the expression above can be interpreted as follows:

• The overall factor −ρ0c0
2 is the amplitude of G+

0 in the first medium.
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Figure 12: The history of various events in equation (9.10).

• The first term H(t) = H
(
t− z−z

c0

)
is propagation phase for the direct wave traveling from

the source at z to a receiver coincide with the source at z. This term should be removed
before applying the imaging condition.

• The second term R1H
(
t− 2a1−2z

c0

)
is the first primary.

• The third term (1−R2
1)

∞∑
n=0

(−1)nRn
1R

n+1
2 H

(
t− 2a1−2z

c0
− (2n+2)[a2−a1]

c1

)
incorporate the sec-

ond primary and all the internal multiples.

Balancing out the −ρ0c0
2 factor, the data after removing the direct wave is denoted as

D(z, t)Δ= −2
ρ0c0

E(z, z, t)−H(t):

D(z, t) = R1H

(
t− 2a1 − 2z

c0

)
+(1−R2

1)
∞∑

n=0

(−1)nRn
1R

n+1
2 H

(
t− 2a1 − 2z

c0
− (2n+ 2)(a2 − a1)

c1

)
.

(9.12)

If we use the t = 0 imaging condition, we have:

D(z, t) =
{

0 if (z < a1)
R1 if (z = a1)

(9.13)

In other words, we obtained the image of the first reflector at its actual depth a1 with its correct
reflection coefficient as amplitude.
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9.2 Between the first and second reflectors

For a1 < z < a2, we have:

GDN
0 (z, zg) =

ρ1
2ik1

1

1 +R1

(
(R1λ− λ−1)μ+ (λ−R1λ

−1)μ−1
)
,

∂GDN
0 (z, zg)

∂zg
=

ρ1k

2k1

1

1 +R1

(
(R1λ− λ−1)μ− (λ−R1λ

−1)μ−1
)
,

(9.14)

where λ = eik1(z−a1), μ = eik(zg−a1). Using equations (9.14) and (9.6), we have:

D(z, zs) =
1

ρ(zg)

(
GDN

0 (z, zg)
∂D (zg, zs)

∂zg
− ∂GDN

0 (z, zg)

∂zg
D (zg, zs)

)

=
ρ0
2ik

ρ1kx
−1

ρ0k1(1 +R1)

{
(λ−R1λ

−1)μ−1y − (R1λ− λ−1)μαy−1
}

=
ρ1x

−1

2ik1(1 +R1)

{
(λ−R1λ

−1)eika1 − (R1λ− λ−1)αe−ika1
}

(9.15)

If we define: β =
∞∑
n=0

(−1)nRn
1R

n+1
2 ei(2n+2)[a2−a1], we have: α = e2ika1

(
R1 + (1−R2

1)β
)
, and the

equation above can be simplified as:

D(z, zs) =
ρ1x

−1eika1

2ik1(1 +R1)

{
(λ−R1λ

−1)− (R1λ− λ−1)
(
R1 + (1−R2

1)β
)}

=
ρ1x

−1eika1

2ik1

1−R2
1

1 +R1

{
λ− (R1λ− λ−1)β

}

=
ρ1x

−1eika1

2ik1
(1−R1)

{
λ+ (λ−1 −R1λ)β

}

=
ρ0
2ik

x−1eika1(1 +R1)
{
λ+ (λ−1 −R1λ)β

}

(9.16)

If we define: γ = 1−R1β =
∞∑
n=0

(−1)nRn
1R

n
2e

ik1(2n)(a2−a1), the expression above can be rewritten as:

D(z, zs) =
ρ0
2ik

(1 +R1)e
ik(a1−z) {λ−1β + λγ

}
. (9.17)
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The expression above can be verified as the following. The overall factor ρ0
2ik is the amplitude of the

G+
0 at the source. eik(a1−z) is the propagation from the source to the first reflector. 1 + R1 is the

transmission coefficient through the first reflector. The first term λ−1β can be expanded as:

λ−1β = eik1(a1−z)
∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)(a2−a1)

= R2e
ik1(2a2−a1−z) −R1R

2
2e

ik1(4a2−3a1−z) + · · · ,
(9.18)

and incorporate all the up-going events. The second term λγ can be expanded as:

λγ = eik1(z−a1)
∞∑

n=0

(−1)nRn
1R

n
2e

ik1(2n)(a2−a1)

= eik1(z−a1) −R1R2e
ik1(z+2a2−3a1) +R2

1R
2
2e

ik1(z+4a2−5a1) + · · · ,
(9.19)

and incorporate all the down-going events. And,

GDN
0 (z, zs) =

ρ1
2ik1

1

1 +R1

(
(R1λ− λ−1)ξ + (λ−R1λ

−1)ξ−1
)
,

∂GDN
0 (z, zs)

∂zs
=

ρ1k

2k1

1

1 +R1

(
(R1λ− λ−1)ξ − (λ−R1λ

−1)ξ−1
)
,

(9.20)

where λ = eik1(z−a1), ξ = eik(zs−a1).

− 1

ρ(zs)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
=

kρ1
2k1ρ0

(λ−1 −R1λ)ξ + (R1λ
−1 − λ)ξ−1

1 +R1

+
kρ1
2k1ρ0

(λ−1 −R1λ)ξ − (R1λ
−1 − λ)ξ−1

1 +R1

=
kρ1
k1ρ0

(λ−1 −R1λ)ξ

1 +R1

(9.21)

We have:

− 1

ρ(zs)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
D(z, zs) =

ρ1
2ik1

{
λ−1β + λγ

}{
λ−1 −R1λ

}

=
ρ1
2ik1

{
βλ−2 −R1γλ

2 + γ − βR1

} (9.22)
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Let’s check the physical meaning of the terms above. The first term:

βλ−2 =

[ ∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)(a2−a1)

]
eik1(2a1−2z)

= R2e
ik1(2a2−2z) −R1R

2
2e

ik1(4a2−2a1−2z) +R2
1R

3
2e

ik1(6a2−4a1−2z) + · · ·
(9.23)

incorporates the upward reflections (from the second reflector) towards depth z from below (labeled
as event 2, 6, 10, · · · in Figure 13). And the second term :

−R1γλ
2 = −R1

[ ∞∑

n=0

(−1)nRn
1R

n
2e

ik1(2n)(a2−a1)
]
eik1(2z−2a1)

= −R1e
ik1(2z−2a1) +R2

1R2e
ik1(2z+2a2−4a1) −R3

1R
2
2e

ik1(2z+4a2−6z1) + · · ·
(9.24)

incorporate the downward reflections (from the first reflector) towards depth z from above (labeled
as event 1, 5, 9, · · · in Figure 13). The rest of events can be interpreted as follows:

γ − βR1 = 1− 2βR1 = 1− 2R1

∞∑

n=0

(−1)nRn
1R

n+1
2 eik(2n+2)(a2−a1)

= 1 + 2
[
−R1R2e

ik1(2a2−2a1)
]1

+ 2
[
−R1R2e

ik1(2a2−2a1)
]2

+ 2
[
−R1R2e

ik1(2a2−2a1)
]3

+ · · ·
(9.25)

where in the final expression above, the first term 1 is the propagation phase for the direct arrival
from the source (this term is a unit since the source and receiver coincide). The second term
2
[
−R1R2e

ik(2a2−2a1)]1 represents two separate propagations labeled as event 3 and 4 in Figure 13,
both events with distinct propagation history share the same propagation time. The third term
2
[
−R1R2e

ik(2a2−2a1)]2 represents two separate propagations labeled as event 7 and 8 in Figure 13,
and again both events with distinct propagation history share the same propagation time.

The final result can be Fourier transformed into the time domain as:

E(z, z, t) = −ρ1c1
2

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H(t) + 2
∞∑
n=1

(−1)nRn
1R

n
2H

(
t− 2n(a2−a1)

c1

)

+
∞∑
n=0

(−1)n+1Rn+1
1 Rn

2H
(
t− 2z+2na2−2(n+1)a1

c1

)

+
∞∑
n=0

(−1)nRn
1R

n+1
2 H

(
t− 2(n+1)a2−2na1−2z

c1

)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9.26)
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Figure 13: The diagram of events for an experiment with both source and receiver coincide at depth
z which located between the first reflector at depth a1 and the second reflector at depth a2.

Balancing out the −ρ1c1
2 factor, the data after removing the direct wave is denoted as

D(z, t)Δ= −2
ρ1c1

E(z, z, t)−H(t):

D(z, t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
∞∑
n=1

(−1)nRn
1R

n
2H

(
t− 2n(a2−a1)

c1

)

+
∞∑
n=0

(−1)n+1Rn+1
1 Rn

2H
(
t− 2z+2na2−2(n+1)a1

c1

)

+
∞∑
n=0

(−1)nRn
1R

n+1
2 H

(
t− 2(n+1)a2−2na1−2z

c1

)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9.27)

and after taking the t = 0 imaging condition, we have:

D(z, t) =

⎧
⎨
⎩
−R1 if (z = a1)
0 if (a1 < z < a2)
R2 if (z = a2)

(9.28)

Note that in the previous section, i.e., to image above the first reflector at a1, we obtain the
amplitude R1 when z approach a1 from above. In this section we image below the first reflector at
a1, the amplitude of the image is −R1 when z approaches a1 from below, as it should.

9.3 Below the second reflector

GDN
0 (z, z′)

∣∣
z′=zg

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
μ+

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
μ−1

2ik2(1 +R1)(1 +R2)/ρ2
,

∂

∂z′
GDN

0 (z, z′)

∣∣∣∣
z′=zg

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
μ−

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
μ−1

2k2(1 +R1)(1 +R2)/(kρ2)
,

(9.29)
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where λ ≡ eik2(z−a2), μ ≡ eik(zg−a1), and ν ≡ eik1(a2−a1).

D(z, zs) =
1

ρ(z′)

{
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

}∣∣∣∣
z′=B

z′=zg

=
1

ρ(z′)

[
GDN

0 (z, z′, ω)
∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

]

z′=zg

=
ρ2
2ik2

eik(a1−zs)
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

(1 +R1)(1 +R2)

− ρ2
2ik2

eik(a1−zs)
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
(1 +R1)(1 +R2)

{
R1 + (1−R2

1)β
}

(9.30)

Since ρ2k
ρ0k2

= ρ2c2
ρ0c0

= ρ1c1
ρ0c0

ρ2c2
ρ1c1

= 1+R1
1−R1

1+R2
1−R2

, the equation above can be simplified as:

D(z, zs) =
ρ0e

ik(a1−zs)/(2ik)
(1−R1)(1−R2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
R1R2ν

−1 + ν
]
λ −

[
R1ν

−1 +R2ν
]
λ−1

−
[
R1R2ν

−1 +R2
1ν
]
λ +

[
R1ν

−1 +R2
1R2ν

]
λ−1

− (1−R2
1)λ

∞∑

n=0

(−1)n
[
Rn

1R
n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]

+ (1−R2
1)λ

−1
∞∑

n=0

(−1)n
[
Rn

1R
n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.31)

Since
∞∑

n=0

(−1)n
[
Rn

1R
n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]
= R2

2ν + (1−R2
2)

∞∑

n=0

(−1)nRn+1
1 Rn+1

2 ν2n+3, (9.32)

and

∞∑

n=0

(−1)n
[
Rn

1R
n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
= R2ν, (9.33)

equation (9.31) can be simplified as follows:
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D(z, zs) =
ρ0e

ik(a1−zs)(1−R2
1)ν

2ik(1−R1)(1−R2)

(
λ−R2λ

−1 −R2
2λ+R2λ

−1 − (1−R2
2)λ

∞∑

n=0

(−1)nRn+1
1 Rn+1

2 ν2n+2

)

=
ρ0e

ik(a1−zs)(1−R2
1)(1−R2

2)

2ik(1−R1)(1−R2)
λ
∞∑

n=0

(−1)nRn
1R

n
2ν

2n+1

=
ρ0(1 +R1)(1 +R2)

2ik
eik(a1−zs)eik2(z−a2)

∞∑

n=0

(−1)nRn
1R

n
2e

ik1(2n+1)(a2−a1).

In the derivation above, we rewrite the trivial quantity 1 as the special case of (−1)nRn
1R

n
2ν

2n with
n = 0. The expression above is exactly the wave field in the deepest layer: only the down-going wave
is present with correct amplitude; the up-going waves cancel with each other as actually happened
in the subsurface. And the expression above can be simplified as:

D(z, zs) =
ρ0(1 +R1)(1 +R2)

2ik
eik(a1−zs)eik1(a2−a1)eik2(z−a2)γ

After the downward continuation of the receiver, we can use the Green’s theorem to downward
continue the source:

GDN
0 (z, z′)

∣∣
z′=zs

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
ξ +

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
ξ−1

2ik2(1 +R1)(1 +R2)/ρ2
,

∂

∂z′
GDN

0 (z, z′)

∣∣∣∣
z′=zs

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
ξ −

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
ξ−1

2k2(1 +R1)(1 +R2)/(kρ2)
,

(9.34)

where λ ≡ eik2(z−a2), ξ ≡ eik(zs−a1), and ν ≡ eik1(a2−a1).

− 1

ρ(zs)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
=

kρ2
k2ρ0

ν−1(λ−1 −R2λ) +R1ν(R2λ
−1 − λ)

(1 +R1)(1 +R2)
ξ,

and

− 1

ρ(zs)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
D(z, zs) =

kρ2
k2ρ0

ν−1(λ−1 −R2λ) +R1ν(R2λ
−1 − λ)

(1 +R1)(1 +R2)
eik(zs−a1)

· ρ0(1 +R1)(1 +R2)

2ik
eik(a1−zs)eik1(a2−a1)eik2(z−a2)γ
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The expression above can be simplified as:

E(z, z) =
ρ2
2ik2

eik1(a2−a1)eik2(z−a2)γ
{
ν−1(λ−1 −R2λ) +R1ν(R2λ

−1 − λ)
}

=
ρ2
2ik2

νλγ
{
ν−1(λ−1 −R2λ) +R1ν(R2λ

−1 − λ)
}

=
ρ2
2ik2

{
1−R2λ

2 +R1R2ν
2 −R1λ

2ν2
}
γ

=
ρ2
2ik2

{
1 +R1R2ν

2 −R2λ
2 −R1λ

2ν2
}
γ

Since:
(
1 +R1R2ν

2
)
γ =

(
1−R1R2ν

2
) ∞∑
n=0

[
−R1R2ν

2
]n

= 1, and:

R2λ
2γ = R2λ

2
∞∑

n=0

(−1)nRn
1R

n
2ν

2n = R2λ
2 +R2λ

2
∞∑

n=1

(−1)nRn
1R

n
2ν

2n

= R2λ
2 −R2

2λ
2
∞∑

n=1

(−1)nRn
1R

n−1
2 ν2n+2,

R1λ
2ν2γ = R1λ

2ν2
∞∑

n=0

(−1)nRn
1R

n
2ν

2n = λ2
∞∑

n=0

(−1)nRn+1
1 Rn

2ν
2n+2,

{
−R2λ

2 −R1λ
2ν2

}
γ = −R2λ

2 − (1−R2
2)λ

2
∞∑

n=0

(−1)nRn+1
1 Rn

2ν
2n+2.

The final downward continuation result can be expressed as:

E(z, z) =
ρ2
2ik2

{
1−R2λ

2 − (1−R2
2)λ

2
∞∑

n=0

(−1)nRn+1
1 Rn

2ν
2n+2

}

=
ρ2
2ik2

{
1−R2λ

2 + (1−R2
2)λ

2
∞∑

n=0

(−1)n+1Rn+1
1 Rn

2ν
2n+2

}

=
ρ2
2ik2

{
1−R2e

ik2(2z−2a2) + (1−R2
2)e

ik2(2z−2a2)
∞∑

n=0

(−1)n+1Rn+1
1 Rn

2e
ik1(2n+2)(a2−a1)

}
.

In the results above, ρ2
2ik2

is the overall amplitude of G+
0 in the third layer. The first term 1 is

the propagation phase of the wave traveling from the source and receiver coincide at depth z. The
second term −R2e

ik1(2a2−2a1) is the reflection from the second reflector at depth a2 (here it has
−R2 as its reflection coefficient since both the source and receiver are located below the reflector).

328



RTM M-OSRP12

The third term (1−R2
2)e

ik1(2a2−2a1)
∞∑
n=0

(−1)n+1Rn+1
1 Rn

2e
ik1(2n+2)(a2−a1) contains infinite number of

internal multiples generated between the first and second reflector.

E(z, z, t) = −ρ2c2
2

⎧
⎨
⎩

H(t)−R2H
(
t− 2z−2a2

c2

)

+(1−R2
2)H

(
t− 2z−2a2

c2
− (2n+2)(a2−a1)

c1

)
⎫
⎬
⎭ (9.35)

Balancing out the −ρ2c2
2 factor, the data after removing the direct wave is denoted as

D(z, t)Δ= −2
ρ2c2

E(z, z, t)−H(t):

D(z, t) =

⎧
⎨
⎩
−R2H

(
t− 2z−2a2

c2

)

+(1−R2
2)H

(
t− 2z−2a2

c2
− (2n+2)(a2−a1)

c1

)
⎫
⎬
⎭ (9.36)

and after taking the t = 0 imaging condition, we have:

D(z, t) =
{
−R2 if (z = a2)
0 if (a2 < z)

(9.37)

Note that in the previous section, i.e., to image between the first and second reflectors, we obtain the
amplitude R2 when z approach a2 from above. In this section we image below the second reflector
at a2, the amplitude of the image is −R2 when z approaches a2 from below, as it should.

10 Conclusions

A general and efficient procedure to compute the Green’s function with vanishing Dirichlet and
Neumann boundary conditions has been derived for a 1D medium of arbitrary complexity, and its
effectiveness has been demonstrated with numerical examples that accurately predict the up-going
and down-going wave field at depth using only the data on the shallower measurement surface. The
density contribution to the Green’s theorem and Green’s function is accurately studied to better
understand its role in imaging. In order to generalize the idea in this paper to a multidimensional
earth, a finite-difference scheme is derived and validated by comparison with an analytic benchmark.

Several remarkable properties of the Green’s function with double vanishing boundary conditions
have been identified:

• The vanishing property of GDN
0 for z > a unequivocally states that it is not necessary to know

the medium’s properties below a target to achieve the target’s depth image. This conclusion
is also stated in the paper “Finite volume model for migration” by Weglein et al. (2011a).
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• GDN
0 contains no internal multiple and no source-generated reflections; this property agrees

perfectly with not only the reflectionless approximation of WKBJ Green’s function, but also
with the idea of avoiding reflections and multiples in many current seismic imaging procedures.

We also have reported some very early and very positive news on the first wave theory RTM
imaging tests, with a discontinuous reference medium and images that have the correct depth
and amplitude (that is, producing the reflection coefficient at the correctly located target) with
primaries and multiples in the data. That is an implementation of Weglein et al. (2011a;b) with
creative implementation and testing and analysis.
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12 Appendix A: Classical Reflection Problem

In this appendix we derive and list the solution of the classical acoustic reflection problem. The
medium properties are listed in Table 1. We denote k = ω/c0, k1 = ω/c1, and the incident wave
is eikz

′ . We assume the reflection and transmission waves are Ae−ikz
′ and Beik1z

′ , respectively.
In order to have a minimal framework for derivation, the philosophy here is to use the simplest
possible form for the incident, reflection, and transmission waves. The complexities caused by
flexible reflector depth are transferred to the parameters: A and B.

The boundary condition at the boundary z′ = a requires that:

eika +Ae−ika = Beik1a,

(ik/ρ0)e
ika + (−ik/ρ0)Ae−ika = (ik1/ρ1)Beik1a.

(12.1)

The equations above can be simplified as:

eika +Ae−ika = Beik1a,

eika −Ae−ika =
ρ0k1
ρ1k

Beik1a.
(12.2)

Since ρ0k1
ρ1k

= c0ρ0
c1ρ1

, we have:
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Figure 14: The solution of the two acoustic reflection problems in this appendix. Left: The down-
going incident wave from the medium above; right: the up-going incident wave from the medium
below.

eika +Ae−ika = Beik1a,

eika −Ae−ika =
ρ0c0
ρ1c1

Beik1a.
(12.3)

Solving the above equations, we have:

A =
c1ρ1 − c0ρ0
c1ρ1 + c0ρ0

eik(2a) = Reik(2a),

B =
2c1ρ1

c1ρ1 + c0ρ0
ei(k−k1)a = Tei(k−k1)a.

(12.4)

If the incident wave comes from the second medium: e−ik1z′ , similarly we can assume the reflection
wave being of the form Aeik1z

′ and the transmission wave of the form Be−ikz
′ .

e−ik1a +Aeik1a = Be−ika,

(−ik1/ρ1)e−ik1a + (ik1/ρ1)Ae
ik1a = (−ik/ρ0)Be−ika.

(12.5)

After a straightforward simplification we have:
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e−ik1a +Aeik1a = Be−ika,

e−ik1a −Aeik1a =
kρ1
k1ρ0

Be−ika.
(12.6)

Remove the ω dependency in kρ1
k1ρ0

, to have:

e−ik1a +Aeik1a = Be−ika,

e−ik1a −Aeik1a =
ρ1c1
ρ0c0

Be−ika.
(12.7)

The solution of the above equations is:

A =
c0ρ0 − c1ρ1
c0ρ0 + c1ρ1

e−ik1(2a) = Re−ik1(2a),

B =
2c0ρ0

c1ρ1 + c0ρ0
ei(k−k1)a = Tei(k−k1)a.

(12.8)

13 Appendix B: Confirmation that the Green’s function (4.10) is the solu-
tion of the wave equation with vanishing Dirichlet and Neumann boundary
conditions at the deeper boundary

In this case we have: A < a < B, and the acoustic wave equation is:

{
ρ(z′)

∂

∂z′

(
∂

ρ(z′)∂z′

)
− ω2

c2(z′)

}
G0(z, z

′, ω) = δ(z − z′). (13.1)

Here we prove that the boundary conditions at the reflector are satisfied. First is the continuity
of pressure. According to equation (4.10), the pressure immediately below the reflector can be
obtained by setting z′ in the expression for z′ > a (i.e., the second case) to a:

G0(z, a+, ω) = ρ1
eik1(z−a) − eik1(a−z)

2ik1
. (13.2)

while the pressure immediately above the reflector can be obtained by setting z′ in the expression
for z′ < a (i.e., the first case) to a:

G0(z, a−, ω) =
ρ1
2ik1

{
Reik1(z−a) − eik1(a−z)

1 +R
+

eik1(z−a)−Reik1(a−z)

1 +R

}
. (13.3)
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We can simplify the expression above as follows:

G0(z, a−, ω) =
ρ1
2ik1

{
(1−R)eik1(z−a) +

−1−R

1 +R
eik1(a−z) +

R+R2

1 +R
eik1(z−a)

}

=
ρ1
2ik1

{
(1−R+R)eik1(z−a) − eik1(a−z)

}

=
ρ1
2ik1

{
eik1(z−a) − eik1(a−z)

}

= G0(z, a+, ω).

(13.4)

On the other hand, the continuity of 1
ρ
∂GDN

0
∂z′ across the boundary can be verified in a similar fashion.

The value of 1
ρ
∂GDN

0
∂z′ immediately below the reflector is:

1

ρ1

∂G0(z, z
′, ω)

∂z′

∣∣∣∣
z′=a+

=
−1
ρ1

{
eik1(z−a) + eik1(a−z)

}
. (13.5)

while the value of 1
ρ
∂GDN

0
∂z′ immediately above the reflector can be obtained by setting z′ in the

expression for z′ < a (i.e., the first case) to a:

1

ρ0

∂G0(z, z
′, ω)

∂z′

∣∣∣∣
z′=a−

=
c1
ρ0c0

{
Reik1(z−a) − eik1(a−z)

1 +R
+

Reik1(a−z)−e
ik1(z−a)

1 +R

}
. (13.6)

We can simplify the expression above as follows:

1

ρ0

∂G0(z, z
′, ω)

∂z′

∣∣∣∣
z′=a−

=
c1
ρ0c0

{
(R− 1)eik1(z−a) +

R−R2

1 +R
eik1(z−a) +

R− 1

1 +R
eik1(a−z)

}

=
c1
ρ0c0

{
R− 1

R+ 1
eik1(z−a) +

R− 1

R+ 1
eik1(a−z)

}

=
c1
ρ0c0

R− 1

R+ 1

{
eik1(z−a) + eik1(a−z)

}

=
−1
ρ1

{
eik1(z−a) + eik1(a−z)

}

=
1

ρ1

∂G0(z, z
′, ω)

∂z′

∣∣∣∣
z′=a+

.

(13.7)

333



RTM M-OSRP12

The derivation above takes advantage of the following relations: since R = ρ1c1−ρ0c0
ρ1c1+ρ0c0

, we have:

c1
ρ0c0

R− 1

R+ 1
=

c1
ρ0c0

ρ1c1−ρ0c0
ρ1c1+ρ0c0

− 1
ρ1c1−ρ0c0
ρ1c1+ρ0c0

+ 1
=

c1
ρ0c0

−2ρ0c0
2ρ1c1

=
−1
ρ1

.

14 Appendix C: The causal acoustic Green’s function used in this report

The analytic solution of the Green’s function in equation (2.2) is available if both the velocity c(z′)
and density ρ(z′) fields are constant: i.e., if c(z′) = c0 and ρ(z′) = ρ0. In this case the term
1/ρ(z′) = 1/ρ0 becomes a constant and can be moved to the front of the ∂/∂z′ operator, to have:

1

ρ0

{
∂

∂z′
∂

∂z′
+

ω2

c20

}
G0(z, z

′, ω) = δ(z − z′).

Both terms on the left-hand side of the equation above contain the 1
ρ0

factor and the equation can
be more succinctly written as:

{
∂

∂z′
∂

∂z′
+

ω2

c20

}
G0(z, z

′, ω) = ρ0δ(z − z′). (14.1)

Note that the equation above is identical to equation (27) of Weglein et al. (2011a), except for the
extra density factor ρ0 on the right-hand side, and the solution for equation (27) of Weglein et al.
(2011a) is eik(z−z′)

2ik where k = ω/c0; our Green’s function in equation (14.1) is:

G0(z, z
′, ω) =

ρ0
2ik

eik|z−z
′|, (14.2)

where again, k = ω/c0.
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Summary

“The exclusive view” of seismic reflection data consid-
ers primaries as signal and multiples as noise. At the
2013 SEG “Recent Advances and the Road Ahead”, a
presentation entitled “Multiple Attenuation: Recent Ad-
vances and the Road Ahead (2013)” (also see Weglein,
2014) described the state of seismic multiple removal in
terms of: (1) current industry capability, and (2) what
are the significant and substantive open issues and chal-
lenges today. We described a three-pronged strategy that
has the potential to close the current gap, for complex
and complicated offshore and conventional and unconven-
tional onshore plays. That entire activity and viewpoint
is “the exclusive view” of seismic reflection data, where
primaries are signal and multiples are a form of coherent
noise that needs to be removed.

There is an alternative view, “the inclusive view” of pro-
cessing seismic reflection data, where primaries and mul-
tiples are treated as signal. In that view both are consid-
ered useful, taken separately and/or taken together. “The
inclusive view” is thought by some to provide advantage
and added-value, over and beyond just using primaries as
signal for seismic imaging. The inclusive view of utilizing
both primaries and multiples, separately, or together, to
enhance imaging has recently become a topic of increased
discussion and activity. One purpose of this article is to
examine this inclusive view and activity.

Seismic imaging

Since those pursuing the inclusive view are seeking added
value in seismic imaging, we begin our discussion with a
brief history of seismic imaging. That will allow us to
define terms and place these recent “inclusive” efforts in
perspective, and to assist in their examination and eval-
uation.

Let’s begin by discussing the various concepts, objec-
tives, and levels of ambition for seismic imaging. Migra-
tion has two ingredients: (1) a wave propagation com-
ponent and (2) an imaging principle or concept. Jon
Claerbout (Claerbout, 1971; Riley and Claerbout, 1976)
was the initial and key wave-equation-migration imaging-
concept pioneer and algorithm developer, and together
with Stolt (1978) and Lowenthal et al. (1985), they intro-
duced imaging conditions for locating reflectors at depth
from surface-recorded data.

Imaging conditions

The three key imaging conditions that were introduced

are:
(1) time and space coincidence of up and downgoing
waves,
(2) the exploding-reflector model, and
(3) predicting a source and receiver experiment at a
coincident-source-and-receiver subsurface point, and ask-
ing for time equals zero (the definition of Wave-Equation
Migration (WEM)).
For a normal-incident spike plane wave on a horizontal
reflector, these three imaging concepts are totally equiva-
lent. However, a key point to make clear for this paper, is
that for a non-zero-offset surface seismic-data experiment
they are no longer equivalent, for either a one-dimensional
or a multi-dimensional subsurface. For the purposes of de-
termining quantitative information on the physical mean-
ing of the image, the clear choice is predicting a source
and receiver experiment at depth. Wave-equation migra-
tion (WEM) is defined as using the third imaging con-
dition, (3), the predicted source and receiver experiment
at depth at time equals zero. In anything beyond 1D
normal-incidence or zero-offset data, the other two imag-
ing concepts (for example, time coincidence of up and
down waves) turn out to be asymptotic ray travel-time-
curve “Kirchhoff” algorithms with a trajectory of image
candidates, that are summed, looking for constructive ad-
dition for structural determination. Lost is the definitive
“yes” or “no” to a point being an image provided by a
source and receiver experiment at a coincident subsur-
face point. Stolt and his colleagues (Clayton and Stolt,
1981; Stolt and Weglein, 1985; Stolt and Benson, 1986)
extended the experiment-at-depth concept to allow a sep-
arated source and receiver at time equals zero, to not only
provide a definitive “yes” or “no” to any given subsur-
face point being a reflector, but, in addition, provide the
angle-dependent reflection coefficient. The other imaging
concepts cannot provide that imaging definitiveness nor
the quantitative angle-dependent reflection-coefficient in-
formation at the image point. In addition, and in general
all pre-stack versions, variants, and extensions of the first
two imaging conditions listed above, whether for one-way
waves or two-way waves, or for data consisting of pri-
maries, or primaries and multiples, are always asymp-
totic or ray approximates of the third imaging condition.
Asymptotic migration, resulting from adopting imaging
conditions (1) or (2), will impose asymptotic forms of
wave propagation that relate to ray theory and do not
satisfy the ubiquitous space-filling propagation and illu-
mination of wave theory and wave-theory migration.

The properties and benefits of Wave-Equation Migration
(WEM) in comparison to asymptotic “Kirchhoff-like” mi-
gration are:
(1) Definitiveness of a subsurface point corresponding
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to (or not corresponding to) structure from a predicted
source and receiver experiment at that point;
(2) Quantitative angle-dependent reflection coefficient in-
formation at the imaged point; and
(3) Ubiquitous volume-filling wave propagation, coverage
and illumination, compared to the limited propagation
and illumination of ray theory.

RTM

When two-way migration was introduced by Whit-
more, McMechan and their colleagues (Whitmore, 1983;
McMechan, 1983), it was formulated and carried out first
in post-stack and then in the pre-stack domain by running
the data back in time (hence reversed time migration, or
RTM) and the source field forward in time and then cross-
correlating the two fields at zero lag. The post-stack and
pre-stack versions were basically the earlier exploding-
reflector model and the time coincidence of up and down-
going wave-imaging concepts, respectively. That formu-
lation of asymptotic RTM has become so widespread and
ubiquitous that it has infected even one-way migration,
with an unquestioned and unfortunately lock-step repeat,
where the very meaning of migration has come to be de-
fined as:

I(x) =
∑

xs

∑

ω

S′(x,xs;ω)R(x,xs;ω)

S′(x,xs;ω)S(x,xs;ω) + ε2
, (1)

where R is the back-propagated reflection data, S is the
forward-propagated source wavefield, the zero-lag cross-
correlation is indicated by the sum over angular frequency,
ω, and the sum over sources adds candidate-image travel-
time trajectories. S′ is the complex conjugate of S, and
ε is a stabilization parameter.

All current RTM methods correspond to asymptotic ray
based migration, by adopting a version of imaging condi-
tion (1).

The conventional RTM method represented by equa-
tion (1), consists of back propagating the receiver field
and forward propagating the source field, where each is
carried out using the wave equation. However, the cross-
correlation at zero lag is the grown-up version of imag-
ing condition (1) and the imaging condition (1) is the
place that the method entered the land of asymptotics
and “Kirchhoff” ray theory.

All current RTM methods (for primaries and multiples)
use variants and extensions or higher-order terms based
on equation (1), and hence do not correspond to wave-
equation migration.

That might come as a surprise to the very large number
of researchers and those who apply equation (1) in oil and
service companies that with all the wave-equation com-
puter effort and expense to implement and utilize equa-
tion (1) that it doesn’t correspond to wave-equation mi-
gration. The use of equation (1) is ubiquitous, but the
imaging method it employs and represents and the RTM

migration itself is ray-theoretic and is therefore not ubiq-
uitous in its subsurface coverage and illumination.

Wave-equation migration (WEM) for two-way
waves, for diving waves, or for migrating
primaries and multiples

Neither the post- nor pre-stack current versions of RTM
(captured in equation (1)) corresponded to predicting a
source and receiver experiment at depth and hence nei-
ther is WEM RTM. We have a strong sense that many
researchers that begin with migration forms such as equa-
tion (1) today, have no idea that they are starting with
and remain in asymptotic rather than wave-equation mi-
gration concepts and algorithms. Weglein and his col-
leagues (Weglein et al., 2011a,b; Liu and Weglein, 2013)
provided for two-way wave propagation the first source
and receiver experiment at depth and wave-equation mi-
gration, i.e., WEM RTM. Green’s theorem provides a
solid basis and firm foundation for predicting a source
and receiver experiment at depth from the wavefield on
an upper surface of a volume. That’s how wave-equation
migration RTM is formulated when required for either:
(1) turning-wave primaries, and (2) for reflection data
consisting of both primaries and multiples. The benefits
and added value of WEM RTM compared to all current
and conventional RTM methods (equation (1)) are the
same benefits as between wave-equation migration and
asymptotic or Kirchhoff forms for one-way waves for one-
way-wave migration: (1) definitiveness on whether a point
in the subsurface corresponds to structure, (2) the angle-
dependent reflection coefficient at the image point, and
(3) the subsurface coverage, and illumination of waves
versus rays. Equation (2) describes WEM migration for

one-way waves, where D is the surface data, and G−D
0 is

the anti-causal Green’s function that vanishes on the mea-
surement surface. Equation (3) is WEM RTM where D
in the integral is the surface data, and GDN

0 is the Green’s
function that along with its normal derivative vanishes on
the lower surface and the walls of the volume.

D =

∫

Ss

∂G−D
0

∂zs

∫

Sg

∂G−D
0

∂zg
DdSg dSs

(Green, 1-way waves) (2)

D =

∫

Ss

[
∂GDN

0

∂zs

∫

Sg

{
∂GDN

0

∂zg
D +

∂D

∂zg
GDN

0

}
dSg

+ GDN
0

∂

∂zs

∫

Sg

{
∂GDN

0

∂zg
D +

∂D

∂zg
GDN

0

}
dSg

]
dSs

(Green, 2-way waves) (3)

Equation 2 is Stolt prestack one-way wave-equation mi-
gration, and equation 3 is wave-equation-migration RTM.

These new wave-equation-migration RTM methods
(equation 3) provide for two-way wave propagation what
earlier wave-equation migration methods (e.g., Stolt,
1978) provided for one-way propagation (Weglein et al.,
2011a; Stolt and Weglein, 2012).
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Wave-Equation Migration Imaging for data
consisting of primaries and multiples

In Figure 1, we illustrate (from Liu and Weglein, 2013)
the result from applying equation (3) for WEM RTM
to data that consists of all primaries and internal mul-
tiples, from a one-dimensional layered medium. The co-
incident source and receiver experiment at time equals
zero is shown at different locations in the subsurface,
predicting the correct location of structure. In addition,
the correct reflection coefficient is provided on each side
of each reflector, by the experiment being predicted for
a source and a receiver slightly above or slightly below
each reflector, respectively. Hence, to migrate with pri-
maries and multiples, you are required to simply follow
what George Green prescribed in 1828 (Green, 1828) for
a closed surface adjusted by Weglein et al. (2011b) for
surface reflection data with an accurately known discon-
tinuous subsurface in the volume, and a Green’s func-
tion that corresponds to properties in that volume and
vanishes along with its normal derivative on all surfaces
except the upper surface. There is no “crosstalk”, no
need for “secondary distributed sources” caused by data,
no higher-order scattering theory allusions and incanta-
tions, or other ad hoc or unclear and/or unnecessary con-
structs, including unnecessarily separating primaries and
multiples. It’s all in equation (3). Equation (3) is the
wave-equation migration formula that predicts a source
and receiver in a volume with two-way wave propagation,
and combined with an imaging condition predicts both
structure and the angle-dependent reflection amplitude.
That’s the wave-equation migration method for any two-
way wave propagation in the volume.

Hence, “the inclusive view” is not in any way new, or
requiring new theory, in fact it was historically the first,
the original, and classic focus and objective (e.g., Green’s
theorem (1828)) of predicting a total wavefield inside a
volume (e.g., inside the earth) from total-wavefield sur-
face measurements on the closed surface surrounding the
volume.

Inclusive use of primaries and multiples
to improve image illumination

Recent efforts at inclusive use of primaries and multiples
were aimed at improved image illumination. Illumination
seeks to improve the clarity and resolution of the located
image at depth.

The first step would seem to require a firm theory for cor-
rect depth imaging with primaries and multiples. Only af-
ter the reflector location is in place are we reasonably con-
cerned with issues of perhaps making the image clearer.

Having a better resolved and clearer but mislocated image
is of dubious or no value.

Unfortunately, the methods currently put forth and pur-
sued to realize “the inclusive view” for illumination do not
hark back and begin their thinking and development with
the solid foundation for wavefield prediction provided by
Green (1828). Furthermore, the recent and current “in-

clusive view” activity very often has had shaky underpin-
nings, at best, and a lack of any clear and firm foundation
and framework, with ad hoc constructs offered with con-
fidence and conviction.

Those proposing to use primaries and multiples to en-
hance imaging have mainly confined their interest to im-
proving the “illumination” for a structure map. Jon
Claerbout famously and accurately observed, many years
ago, that illumination is not an issue, in principle, for
wave theory and wave-theory migration (WEM). Illumi-
nation is a fundamental and intrinsic issue for rays and
all asymptotic (e.g., Kirchhoff) migration methods and
asymptotic RTM (equation (1)). Waves go everywhere
and are space-filling. Rays don’t. Where rays don’t go,
we have an intrinsic asymptotic-method-produced illumi-
nation issue. The conventional and ubiquitous industry-
applied RTM methods, represented by equation (1), are
all asymptotic migration methods. Current industry
RTM methods certainly use the wave equation in running
the data backwards and the source forward and cross cor-
relating at zero lag. However, using the wave equation is
not the same as being a wave-equation migration. Wave-
equation migration predicts a source and receiver exper-
iment at depth, and all current RTM methods do not
meet that requirement and are not wave-equation migra-
tion. Hence, all the currently employed RTM methods
(equation (1)) are, in principle, and on their own, con-
tributing to an intrinsic illumination issue and challenge.
Hence, at the outset, even with 100% perfect “illumina-
tion”, asymptotic imaging provides a challenged image in
terms of its ability to provide a reflection amplitude as a
function of angle at the image point.

However, for those committed to asymptotic RTM and
seeking to achieve improved “illumination” in order to
better delineate structure by utilizing/including free-
surface multiples using variants of equation (1), we recog-
nize a certain added value, in particular, for relatively
shallow targets (Berkhout and Verschuur, 1994, 1997;
Whitmore et al., 2010, 2011b,a; Lu et al., 2011, 2013a,b;
Lu and Whitmore, 2013; Ong et al., 2013). However, the
latter methods also produce false events in the data (due
to crosstalk) at deeper locations, and that issue can rep-
resent a serious downside. For example, imagine if such
a generated false event interferes with a target primary.
There doesn’t seem to be a way, at the moment, to ad-
dress that downside and to remove these false events. The
basic reason those cross-talk-generated false images can-
not be removed is there is no clear and firm wave-theory-
based derivation of the method to begin with. Hence,
we cannot go back and fix or avoid assumptions being
made, that lead to injurious artifacts, since we don’t have
a starting point with a theory without those assumptions.
Those crosstalk problems and artifacts occur whether the
primaries and multiples are separated and utilized sepa-
rately and then combined, or they are taken together at
once (Wang et al., 2013).

Multiples: signal or noise?
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Why did we want to remove multiples to
begin with? Are those reasons any less valid
today?

In general, it is important to remember why, in explo-
ration seismology, we haven’t used primaries and multi-
ples for depth imaging and inversion. Have we overcome
the fundamental reason for separating them and process-
ing primaries? The simple and direct answer is “no”.
Primaries are much more accepting of an approximate,
smooth velocity for imaging. We very often cannot pro-
vide an adequate smooth velocity for imaging primaries,
even when multiples have been effectively removed. Pro-
viding an adequate smooth velocity for imaging diving
waves (with state-of-the-art RTM) going down and under
salt remains a tough and daunting problem. For primaries
and multiples in your data, as in Figure 1, will require an
accurate, discontinuous migration velocity with reflectors
in the overburden for predicting a source and receiver ex-
periment at depth, for wave-equation migration. Deter-
mining an accurate discontinuous velocity model is not a
realistic assumption, not now, and not for anytime in the
foreseeable future.

0
zg=zs

c0, ρ0

c1, ρ1

c2, ρ2

a

b

data    P(zg,zs,t)

P(z,z;t=0)                z=a‐ε

P(z,z;t=0) z=a+ε

P(z,z;t=0) z=b‐ε

P(z,z;t=0)  z=b+ε

R1

‐R1

R2

‐R2

Fig. 1: Imaging with primaries and internal multiples. A dou-
ble Green’s theorem is utilized with the data, and a Green’s
function that along with its normal derivative vanishes on the
lower surface (and on the walls, in multi-D). That is what
wave-equation migration means for waves that are two-way
propagating in the medium.

Wave-equation migration imaging with primaries and in-
ternal multiples requires an accurate, discontinuous ve-
locity model (to achieve any imaging benefit and objec-
tive). Among those considering internal multiples to en-
hance illumination are: Berkhout and Verschuur (1994,
1997, 2012), Soni et al. (2012), Davydenko and Verschuur
(2013a,b), Fleury and Snieder (2011, 2012), and Wang
et al. (2013, 2014).
Conclusion: Multiples contain information.
Does containing information qualify multiples
as signal?

Yes, multiples contain information, but that’s not the
point. The point/problem is they contain too much
information—containing information doesn’t classify an
event as signal; being able to reliably extract informa-
tion from an event defines an event as signal. Multiples

were and remain noise. Interest in illumination needs to
start by selecting wave-equation migration and avoiding
asymptotic migration; that selection of migration algo-
rithms needs to come before considering placing differ-
ent and additional events (e.g., multiples), repeatedly and
iteratively, into various forms of illumination-challenged
migration (equation (1)).

The reason we separate primaries from multiples in explo-
ration seismology is not due to lack of theory. The basic
theory is almost 200 years old. It is due to the inability,
in practice, to provide an adequate discontinuous veloc-
ity model necessary for the inclusive holistic and “all hold
hands” whole-earth view. We need to be cognizant of that
reality and to stay focused on delivering the next level of
multiple-removal capability without requiring subsurface
information. In general, we advocate a path that could
require more data collected rather than detailed and ac-
curate discontinuous subsurface information. The former
is realizable and in general the latter is not. There are
those who would respond “but the method being pro-
posed will cost more for acquisition and for processing.”
The response: the cost of 3D acquisition and processing
is considerably higher than their earlier 2D counterparts.
However, 3D exploration makes good sense from the sav-
ings derived from a more successful drilling program, with
fewer dry holes and more effective placement of develop-
ment wells.

In our view, it is important: (1) to recognize and celebrate
the progress in the field of removing multiples that has
taken place over the past 20 years; and (2) to have a frank
and forthright understanding of the serious and daunting
challenges that remain and are beyond our collective cur-
rent capability. The recent interest in using multiples to
enhance illumination has shown some promise for shallow
reflectors, and needs to be encouraged and pursued, but
cannot be used as a distraction from the main, central
and overriding high priority objective to fill the gap be-
tween the current challenges in removing multiples and
our current ability. We have every confidence that (as
with previous daunting challenges) the current challenge
will be addressed, providing a new level of processing ca-
pability.

Below please find links for the SEG ab-
stracts/posters/presentations and slides that relate
to this communication.
http://mosrp.uh.edu/events/event-news/seg-annual-
meeting-2013-2014
http://mosrp.uh.edu/news/seg-annual-meeting-2013-
2014
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Multiple attenuation: recent progress and a plan to address open, prioritized and pressing
issues and challenges

Arthur B. Weglein, M-OSRP, Physics Department, University of Houston

Summary

This paper provides: (1) a brief overview of the current
status of multiple attenuation in the petroleum industry;
(2) recent progress for marine and on-shore plays; (3)
open issues and pressing challenges and (4) a plan, and
a schedule of delivery, of fundamental new capability to
address these open issues and challenges.

Introduction

The demand for new and improved capability in removing
multiples is driven by the portfolio of the petroleum in-
dustry and by current and anticipated future exploration
trends. For example, the industry moved to deep wa-
ter roughly 30 years ago. With that move, highly ef-
fective multiple-removal methods that were being applied
industry-wide suddenly bumped up against their assump-
tions, when applied to deep water plays, and failed. (As
an example, deconvolution is based on 1D and on statis-
tical assumptions, the latter not satisfied in deep water.)

Since then, the overall industry trend to explore in pro-
gressively more complex and remote areas, with ill-defined
and difficult-to-estimate subsurface properties and in-
creasingly complex plays, is a constant that motivates the
search for capabilities that will not require subsurface in-
formation. Methods that require various forms of subsur-
face information include, e.g., F-K, Radon, and Feedback
demultiple methods.

The inverse scattering series provides the opportunity
to achieve all processing objectives directly and without
subsurface information. The current inverse-scattering-
series (ISS) internal-multiple-attenuation algorithm has
a unique capability to predict the exact phase (time)
and approximate amplitude of all internal multiples, at
once, automatically, and without subsurface informa-
tion. These properties separate the ISS internal-multiple-
attenuation algorithm from all other methods, and make
it the high-water mark of current internal-multiple effec-
tiveness. That is, those ISS properties and strengths are
what all other current demultiple methods (e.g., Feedback
loop methods, modeling and subtracting multiples, and
filter methods) do not possess and cannot deliver (We-
glein and Dragoset, 2005).

Carvalho (1992), Carvalho and Weglein (1994), Araújo
(1994), Araújo et al. (1994), Weglein et al. (1997), and
Weglein et al. (2003) developed ISS free-surface-multiple
elimination algorithms and internal-multiple attenuation
algorithms. Field-data applications demonstrated their
effectiveness. Several marine and onshore data examples

are noted below.

However, at every period in the history of E&P, the arrival
of new capability to address the latest set of challenges
has encouraged industry to explore in more difficult cir-
cumstances — situations never previously imagined, let
alone considered, and beyond current capability to ac-
commodate. That will once again demand a new and
fundamentally higher level of capability and effectiveness.
In this article, we describe how that’s the state of affairs
for multiple attenuation today.

The petroleum industry’s current worldwide portfolio of
both conventional and unconventional onshore plays, and
of increasingly complex offshore plays — with new and
unforeseen challenges — has returned and rejuvenated an
interest in multiple removal (and a demand for substan-
tially increased effectiveness). Multiple removal has come
back to center stage, both for our petroleum-industry
sponsors and concomitantly as a key and fundamental re-
search project for the Mission-Oriented Seismic Research
Program (M-OSRP).

Marine

Early marine field-data examples of the promise and de-
livery of ISS free-surface-multiple and internal-multiple
algorithms can be found in the above-cited papers, SEG
Abstracts, theses, and, e.g., in Matson et al. (1999) and
the Mississippi Canyon data tests in Weglein et al. (2003)
pages R69 and R70.

Those algorithms were recently employed on data from
offshore Brazil, and the results were reported in Ferreira
(2011) (see Figure 1). One of the conclusions in those
field-data tests at Petrobras was that “no other method
was able to show similar effectiveness in attenuating the
internal multiples generated by the salt layers.”

Onshore

Fu et al. (2010a), Terenghi et al. (2011), and Luo et al.
(2011) describe the motivation, evaluation, and compari-
son of different approaches to the removal of internal mul-
tiples on complex synthetic and onshore data. Fu et al.
(2010a) concluded that “Their (ISS internal multiple al-
gorithm) performance was demonstrated with complex
synthetic and challenging land field data sets with en-
couraging results, where other internal multiple suppres-
sion methods were unable to demonstrate similar effec-
tiveness.”

Goodway (2013), Mackidd (2013), and Griffiths et al.
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(2013) were among those that came to the same conclu-
sion. A recent paper by Kelamis et al. (2013) presented
at the International Petroleum Technology Conference in
Beijing, China was entitled “Strategies of Land Internal
Multiple Elimination based on Inverse Scattering Series.”

Good news

At the 2013 post-convention SEG Internal Multiple Work-
shop (Thursday, September 26, 2013) it was positive and
encouraging to see nine of the eleven presentations de-
scribe and exemplify the industry-wide impact and stand-
alone capability (for complex offshore and onshore plays)
of the inverse-scattering-series (ISS) internal-multiple-
attenuator. ISS internal-multiple attenuation has become
fully mainstream within the petroleum industry.

Challenge we face

With all this “good news”, what could be the problem?
Industry’s portfolio/trend and focus today (and for the
foreseeable future) makes it clear that a large and sig-
nificant gap exists between the current challenge for the
removal of free-surface multiples and internal multiples
and the collective capabilities of the world-wide seismic
exploration community (including, of course, M-OSRP).
The specific issues are that: (1) the multiple generators
and the subsurface properties are ill-defined and increas-
ingly complex and (2) too often the multiple is proximal to
or interfering with the primaries. The latter serious and
significant issue can occur in many marine circumstances
(e.g., in the North Sea) and frequently occurs with on-
shore plays. That type of challenge of removing multiples
proximal to, and/or overlapping with, primaries (without
damaging primaries) is well beyond the collective capa-
bility of the petroleum industry, service companies and
academic research groups and consortia to effectively ad-
dress. It is not an issue that new and more complete data
collection and acquisition will by itself address. We sim-
ply don’t have the theory and fundamental concepts in
place today that are needed for algorithm development,
implementation and application. That’s the basic reason
we are unable to address the level of challenge we cur-
rently face worldwide in the petroleum industry. That’s
the bottom line. To adequately address the current indus-
try challenge, we will need to be able to predict exactly
the phase and amplitude of all internal multiples and sur-
gically remove (eliminate) the multiples at all offsets, di-
rectly, and without subsurface information, and without
damaging primaries. No one today is able to provide that
for marine applications, let alone for the frequently more
challenging onshore plays.

There is a need for new basic concepts and fundamen-
tal theory development that must begin with a frank and
forthright recognition of the problem, its economic mo-
ment and significance, and the current technical gap. New
concepts and algorithms will need to be produced, and

then will be followed by addressing the practical applica-
tion, implementation and compute issues.

The plan

At the 2013 SEG International Conference (Recent Ad-
vances and the Road Ahead Session), we proposed and
described a three-pronged strategy (please see the links
below) that M-OSRP will pursue as a direct response to
that challenge. It will have the potential to provide the
necessary step-change increase in capability, and thereby
to respond effectively to this current and pressing prob-
lem. The level and scale of the challenge and the dividend
that will derive from addressing it, motivates and galva-
nizes our efforts. Multiple removal has returned from be-
ing viewed as a relatively mature subject and project that
helped M-OSRP “pay the rent” and is back to occupying
center stage as a major research project and focus within
M-OSRP.

The three-pronged strategy to respond to the current
open issues and pressing challenges in removing multi-
ples is as follows:
(1) Develop the ISS prerequisites for predicting the refer-
ence wave field (wavelet and radiation pattern) and pro-
ducing de-ghosted data (in particular, for on-shore and
ocean bottom acquisition) that are direct and do not re-
quire subsurface information;
(2) Develop internal-multiple-elimination algorithms from
the inverse scattering series;
(3) Develop a replacement for the energy-minimization
criteria for adaptive subtraction, that derives from, and
always aligns with and serves, the inverse-scattering-series
free-surface and internal-multiple algorithms.
This three-pronged strategy represents a consistent and
aligned processing chain, with one single objective: pro-
viding a direct and practical solution to the removal of all
multiples, without requiring any subsurface information,
and without damaging primaries.

The plan is first to progress and deliver items (2) and
(3) for marine applications (since item (1) is in relatively
good shape for marine application), and simultaneously to
progress item (1) for onshore plays. Then, we will return
to onshore exploration with the full suite of (1), (2) and
(3) ingredients in place. Our plan is to deliver in stages,
with offshore delivery coming before onshore delivery.

Recent progress on the three-pronged plan
to address current open issues and challenges

In discussing the second of the three prongs, that is, the
upgrade of the ISS internal multiple attenuator, we need
to begin with a review of its strengths and limitations.
The first order ISS internal multiple attenuator always
attenuates all internal multiples of first order from
all reflectors at once, directly and without subsurface
information, automatically and without interpretive
intervention. That’s a tremendous strength, and is a
constant and holds independent of the circumstances and

Multiple attenuation: recent progress and a plan to address open, prioritized and pressing issues and challenges
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complexity of the geology and the play. The primaries
in the reflection data that enters the algorithm provides
that delivery, without our requiring the primaries to be
identified or in any way separated. The other events in
the reflection data, that is, the internal multiples, when
they enter the first order ISS internal multiple algorithm
will alter and prep the higher order internal multiples
and thereby assist and cooperate with higher order ISS
internal multiple attenuation terms, to attenuate higher
order internal multiples. That’s a benefit and definite
asset, and it’s always in action and completely automatic.
However, there is a downside, a limitation. There are
cases when internal multiples that enter the first order
attenuator can predict spurious or false events. That
is a well-understood shortcoming of the leading order
term, when taken in isolation, but is not an issue for the
entire ISS internal multiple capability. It is anticipated
by the ISS and higher order ISS internal multiple terms
exist to precisely remove that issue of spurious event
prediction, and taken together with the first order term,
no longer experiences spurious event prediction. Chao
Ma and Hong Liang provided those higher order terms
and tests with complex multiple generators show the
effectiveness of their spurious removal higher order ISS
internal multiple attenuation algorithms (Liang et al.,
2013; Ma and Weglein, 2013, 2014a,b). In a similar way,
there are higher order ISS internal multiple terms that
provide the elimination of internal multiples when taken
together with the leading order attenuator term. Yanglei
Zou has produced a general elimination algorithm for
first order internal multiples in a 1D acoustic or elastic
earth. Please see Zou and Weglein (2013), Zou and
Weglein (2014a), Zou and Weglein (2014b), and Zou and
Weglein (2014c).

The first tests that evaluated the ability of the ISS attenu-
ator to perform in inelastic media showed it maintained its
effectiveness in a medium where waves are attenuated and
experiencing Q absorption, without any need or interest
in knowing the absorptive mechanism (Wu and Weglein,
2014a). An outlined initial strategy for eliminating inter-
nal multiples in an inelastic medium is also described.

There are times, for example, in pre-salt plays in the
North Sea, the deep water Gulf of Mexico, offshore Brazil
and the Red Sea where the strategy and algorithms to
eliminate internal multiples in an absorptive inelastic
medium will be called for and necessary. There are other
circumstances, for example, in certain on-shore and off-
shore plays where elastic internal multiple elimination will
be sufficient.

Jing Wu et al. (Wu and Weglein, 2014b) has contributed
to extending off-shore Green’s theorem preprocessing for
wavelet estimation and deghosting to the on-shore elas-
tic wave-field separation, in preparation for on-shore ISS
internal multiple attenuation/elimination. Mayhan et
al. (Mayhan et al., 2012; Mayhan and Weglein, 2013)
has demonstrated the ability of Green’s theorem marine
preprocessing to be effective with SEAM data and ma-
rine field data. He reviewed and summarized the im-

pact of that preprocessing on subsequent multiple removal
(Zhang, 2007; Wang et al., 2012; Yang et al., 2013; Tang
et al., 2013) that motives the on-shore extension. Jinlong
Yang extended the ISS free surface and internal multiple
algorithms to accommodate a source signature and radia-
tion pattern (Yang et al., 2013; Yang and Weglein, 2014).
Shih-Ying Hsu (Hsu et al., 2011) described the relative in-
sensitivity of the ISS internal multiple attenuator to the
near surface reference velocity. Lin Tang (Tang and We-
glein, 2014) presented a method to use an invariance of
Green’s theorem preprocessing to back out the reference
medium properties. Qiang Fu has contributed the first
published results on applying the ISS internal multiple at-
tenuator to field data from Saudi Aramco and Encana (Fu
et al., 2010b; Fu and Weglein, 2014). Fang Liu (Liu and
Weglein, 2013; Liu et al., 2011) has pioneered: (1) new
wave equation migration methods for RTM and (2) ISS
direct depth imaging without a velocity model, with via-
bility demonstrated on the Kristin North Sea field data.

Below please find links for the SEG ab-
stracts/posters/presentations and slides that relate
to this communication.
http://mosrp.uh.edu/events/event-news/seg-annual-
meeting-2013
http://mosrp.uh.edu/news/seg-annual-meeting-2013
http://mosrp.uh.edu/
http://arthurweglein.com

Summary

Today, the ISS internal-multiple attenuator combined
with an energy-minimization adaptive subtraction is
the most capable method for removing internal multi-
ples. However, the current ISS attenuator-plus-adaptive-
subtraction method will fail under the pressing and pri-
oritized challenge of removing internal multiples that are
proximal to and/or interfering with primaries. In this
note, we describe a three-pronged strategy for providing
an effective response to this pressing and prioritized chal-
lenge while retaining and adding to the strengths of the
current ISS internal-multiple attenuator.
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Fig. 1: Stack before (a) and after (b) free-surface-multiple
removal; common offset sections before (c) and after (d)
internal-multiple attenuation (Ferreira, 2011).
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Internal multiple attenuation on Encana data
Qiang Fu and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

The attenuation of internal multiple energy on land data is still
one of the most challenging tasks in seismic data preprocess-
ing. Low data quality and lack of velocity information of com-
plicated structure (especially in near surface) on land data of-
ten result in poor predictions in many cases. Inverse Scattering
Series (ISS) internal multiple attenuation is a very promising
algorithm to attenuate internal multiple energy on land seis-
mic exploration data. The key characteristic of this ISS-based
methods is that they do not require any information about the
subsurface, i.e., they are fully data driven. Internal multiples
from all possible generators are predicted simultaneously from
the input data. In this paper we apply Inverse Scattering Series
(ISS) internal multiple attenuation algorithms on a land seis-
mic data from Canada.

INTRODUCTION

Inverse Scattering Series (ISS) internal multiple attenuation is
a data-driven internal multiple attenuation algorithm (Araújo
et al., 1994; Weglein et al., 1997). The lack of any need for in-
formation about the medium through which the seismic wave
propagates or the reflectors from which the internal multiples
generate makes the algorithm feasible in areas with compli-
cated geological structure. The algorithm predicts internal mul-
tiples for all horizons at once with no manual intervention re-
quired in the whole procedure. Weglein et al. (2003) provided
a very comprehensive and detailed review on inverse scattering
series applied on seismic exploration.

This ISS internal multiple-attenuation scheme is basically the
first term in a subseries of the ISS that predicts the exact time
and amplitude of all internal multiples without subsurface in-
formation. The ISS attenuation algorithm predicts the correct
traveltimes and approximate amplitudes of all the internal mul-
tiples in the data, including converted-wave internal multiples
(Coates and Weglein, 1996). Carvalho (1992) pioneered the
free-surface ISS method and applied it to field data. Matson
et al. (1999) were the first to apply the ISS internal multiple
algorithm to marine towed-streamer field data. Matson (1997)
and Weglein et al. (1997) extended the ISS methods for remov-
ing free-surface and internal multiples from ocean-bottom and
land data. Fu et al. (2010) presented the first land field data
example of ISS internal multiple algorithm. Terenghi (2011)
showed a result of pre-stack field data internal multiple atten-
uation on Encana on-shore data.

THEORY

The ISS internal multiple attenuation algorithm in 2D starts
with the input data, D(kg,ks,ω), that is deghosted and has all
free-surface multiples eliminated. The parameters, kg, ks, and

ω represent the Fourier conjugates to receiver, source and time,
respectively. The ISS internal multiple attenuation algorithm
for first order internal multiple prediction in a 2D earth is given
by Araújo et al. (1994); Weglein et al. (1997):

b2D
3 (kg,ks,qg +qs) =

1
(2π)2

∫ +∞

−∞

∫ +∞

−∞
dk1e−iq1(zg−zs)

dk2e−iq2(zg−zs)

×
∫ +∞

−∞
dz1ei(qg+q1)z1 b1(kg,k1,z1)

×
∫ z1−ε

−∞
dz2ei(−q1−q2)z2 b1(k1,k2,z2)

×
∫ +∞

z2+ε
dz3ei(q2+qs)z3 b1(k2,ks,z3). (1)

The quantity b1(kg,ks,z) corresponds to an un-collapsed mi-
gration (Weglein et al., 1997) of an effective incident plane-
wave data which is given by −2iqsD(kg,ks,ω) The vertical
wavenumbers for receiver, qg, and source qs, are given by

qi = sqn(ω)

√
ω2

c2
0
− k2

i for i = (q,s); c0 is the constant ref-

erence velocity; zs and zg are source and receiver depths; and
zi (i = 1,2,3) represents pseudodepth.

Figure 1: The sub-events of an internal multiple event. The
internal multiple events(rightmost one) is constructed by three
sub-events (left three) that satisfy the lower-higher-lower rela-
tionship in pseudodepth zi (i = 1,2,3).

The construction of a first order internal multiple is illustrated
in Figure 1. The first order internal multiple is composed of
three sub-events that satisfy z1 > z2 and z3 > z2. The travel-
time of the internal multiple is the sum of the traveltimes of the
two deeper sub-events minus the traveltime of the shallower
one. The parameter ε introduced in equation 1 to preclude
z1 = z2 and z2 = z3 in the integrals. For band limited data, ε is
related to the width of the wavelet. The output of equation 1,
b3, is divided by the obliquity factor and transformed back to
the space-time domain. When we subtract the predicted inter-
nal multiples from the original input data (by adaptive subtrac-
tion), all first order internal multiples are attenuated and higher
order internal multiples are altered.



DATA AND METHOD CHOSEN TO ACCOMMODATE
THE DATA

(a)

(b)

Figure 2: (a) Acquisition geometry map of the the first CMP
gather of the data. (b) Acquisition geometry map of the whole
Encana data. Red dots represent the source locations and the
blue dots represent the receiver locations.

The Encana data is from the Western Canadian Sedimentary
Basin, and it is situated over a restricted Devonian shelf basin.
This shallow basin was initially connected to open marine wa-
ters. Pinnacle reefs grew in this marine environment and later
filled with oil, making them a prime exploration target. The
connection to the open marine later became restricted, causing
the basin to fill with evaporates, which consist primarily of an-
hydrite today. The anhydrite acts as a lateral seal and cap rock
for the porous reef reservoirs.

These reefs should be very easy to find in the seismic data.
The basinal anhydrite produces a very strong peak reflection,
but the response is almost reversed when there is a reef present,
as the reef porosity has much lower acoustic impedance than
the anhydrite. This is the case with the western part of this
basin, where the reefs have all been found. On the East side of
the basin, the situation is quite different. There, a Lower Cre-
taceous coal, which reaches 15 meters in thickness, produces
severe multiple interference that obscures the entire Paleozoic
section. Many reefs have been found there, but there have been
many more dry holes drilled than successes, due to this inter-

ference. Most commercial multiple attenuation algorithms fail
to remove this interference. Our goal here is to make the reefs
clearly visible in seismic data in the East side of the basin as it
does in the West side.

As mentioned in the previous section, Fu et al. (2010) tested
the ISS internal multiple attenuation algorithm on the Arabian
Peninsula land field data. Although Arabian Peninsula land
field data in Fu et al. (2010) has better data quality, it also
has much more complicated geological features. So it is hard
to pick a single clear target to judge the internal multiple at-
tenuation result. This Encana data is inferior in data quality
(lower S/N ratio) and acquisition geometry (limited fold and
offset range) comparing with the Arabian Peninsula data, but
there is a very simple target or criterion - the disappeared target
layer (the reef). The Encana data has four different azimuths,
but this does not provide much help for the internal multiple
attenuation task. Terenghi (2011) tested the same method on
another Canadian field data, however, that data has large offset
coverage.

The Encana data we use here is a multi-azimuth 2D survey
line. Figure 2(b) shows the acquisition geometry of the data.
And the geometry of the first CMP gather of this data is shown
in Figure 2(a). All CMP stations of the data compose a straight
line on the map, so this is a 2D survey line even though there
are multiple azimuths in the data. The data is a relative old
data (from mid 1990s), so it has a very low fold for each CMP
gather (32 traces). The 2D ISS internal multiple predication
algorithm requires a full coverage input (each shot gather has
all receivers on the exact same stations, and we have a shot
gather for each station. e.g. there is a trace between every
stations pair.). If we want to perform the 2D ISS internal mul-
tiple predication, we would need to carry out a large amount
of extrapolation to make a full 2D coverage data from the low
fold data we have. That would not only be expensive for com-
putation cost but also not reliable to ”make” so much data by
extrapolation. Given the structures of the whole survey line
is fairly flat, the 1.5D pre-stack method would be a suitable
choice for the internal multiple attenuation task on this data.
In equation 1 we have shown 2D ISS internal multiple attenu-
ation algorithm. The 1.5D ISS internal multiple attenuation al-
gorithm is a straight forward extension of 2D algorithm, which
can be described as below

b1.5D
3 (kx;ω) =

1
(2π)4 e−iq(zg−zs)eiq(zg−zs)

×
∫ +∞

−∞
dz1b1(kx,z1)e2iqz1

×
∫ z1−ε

−∞
dz2b1(kx,z2)e−2iqz2

×
∫ +∞

z2+ε
dz3b1(kx,z3)e2iqz3 . (2)

The notation in equation 2 are the same as the one in equation
1. If we compare it with the 2D version, the only difference
is that in 1.5D formula the output has only one horizontal spa-
tial wavenumber index kx rather than two (kg and ks). This is
obvious since under the 1.5D assumption (flat-layer medium),
all horizontal incident wavenumber should be equal to the re-



flected wavenumber (kg = k1 = k2 = ks = kx). Hence there is
only one horizontal spatial wavenumber kx in equation 2.

RESULTS

Figure 3 and 4 show the input data in pre-stack and post-stack
domains, respectively. As required by the ISS internal multi-
ple attenuation algorithm, the data is first deghosted and has
all free-surface multiples eliminated. In this case, the major
multiple generator is the coal layer. We can see the reflector
clearly in Figure 4 (in the vicinity of 1s) and the target layer
(the reef) should be around 1.15s can not be seen in Figure 4.

Figure 5 and 6 show the internal multiple attenuation result in
pre-stack and post-stack domains, respectively. The reference
velocity c0 used is the shallowest layer NMO velocity (aver-
aged horizontally). After internal multiple attenuation, we can
see that a significant amount of internal multiple energy is re-
moved in the vicinity of 1.15s. However, we can still barely
find the reef clearly. The result shows that there is marginal
improvement of the target event after ISS internal multiple at-
tenuation with this limited offset data.

Figure 7 and 8 are the predicted internal multiples in pre-stack
and post-stack domains, respectively. Although the method
knows nothing about the generator, the predicted internal mul-
tiples only appear below the main generator. Figure 7 shows
the predicted internal multiples has primarily far offset com-
ponent (with some near offset still visible). The near offset
component is critical to obtain an effective internal multiple
attenuation result. Therefore, the lack of near offset internal
multiple prediction is an important reason we do not obtain
very satisfactory result in this case. That is due to the fact that
there is very limited offset coverage of the input data.

The data acquisition geometry consists of 4 different azimuths.
We also tried to use the data of each azimuth separately and
the results are not significantly different comparing the result
by using data of all azimuths together. To use all azimuth data
results a little better quality in the post-stack section and has
4 times higher fold comparing single azimuth data, which is
increasing the S/N ratio.

CONCLUSIONS

We applied 1.5D pre-stack ISS internal multiple attenuation on
Encana land seismic data and got marginal improvement of the
target event. The result is not as satisfactory as the same ISS
internal attenuation algorithm on the Arabian Peninsula data
(Fu et al., 2010). This is due to the ISS internal multiple atten-
uation algorithm requiring a Fourier transform to be performed
along the offset axis. That requires a reasonable offset range in
the input data to avoid truncated effects. Considering the data
acquisition geometry (32 traces per CMP gather and maximum
offset 2000m), this is a positive and encouraging result. The
ISS algorithm for the surface and internal multiple attenuation
require reasonable data collection in terms of sampling and
offset to be effective and to deliver its promise.
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Multiple removal and prerequisite satisfaction: current status and future plans

James D. Mayhan and Arthur B. Weglein, M-OSRP/Physics Department/University of Houston

Summary

In exploration seismology, as the geology probed by seis-
mic waves becomes more complex, untangling multiples
and primaries becomes more challenging. The inverse
scattering series (ISS) has provided distinct algorithms
for eliminating free-surface multiples and attenuating in-
ternal multiples without needing any subsurface informa-
tion. To deliver their promise it is important to satisfy the
prerequisites of these two algorithms. The free-surface-
multiple-elimination algorithm assumes that its input has
had the source wavelet deconvolved and ghosts removed.
The internal-multiple algorithm requires deghosting and
source-wavelet deconvolved and further assumes that its
input data has had free-surface multiples removed. For-
tunately, Green’s theorem provides algorithms for esti-
mating the source wavelet and removing ghosts that are
consistent with the ISS algorithms, i.e., they need no sub-
surface information and are multidimensional. The effects
of meeting and not meeting the prerequisites of the de-
multiple algorithms are exemplified, and the current and
future status of demultiple algorithms are discussed.

Introduction

The two purposes of this paper are (1) to review and ex-
emplify the influence of prerequisite satisfaction for free-
surface-multiple and internal-multiple algorithms with
synthetic data corresponding to offshore plays, and (2)
to motivate onshore methods for prerequisite satisfaction
and describe early efforts to reach that goal.

As exploration for hydrocarbons has moved into areas
with more complex geology, there are more instances in
which multiples are proximal to or even overlapping pri-
maries. Hence, demultiple algorithms are challenged to
remove multiples without damaging proximal primaries.
The inverse scattering series (ISS) can achieve all pro-
cessing objectives directly and without subsurface in-
formation. In particular, the ISS free-surface-multiple-
elimination method has the ability to accurately predict
the phase and amplitude of free-surface multiples, if its
prerequisites (source signature and deghosted data) are
satisfied (Carvalho et al., 1992; Weglein et al., 1997, 2003).
The current ISS internal-multiple-attenuation algorithm
can predict the exact phase (time) and approximate am-
plitude of all internal multiples, at once, automatically,
and without subsurface information (Araújo et al., 1994;
Weglein et al., 2003), as has been demonstrated on marine
field data (Carvalho and Weglein, 1994; Matson et al.,
1999; Terenghi et al., 2011; Ferreira, 2011). Those ISS
properties are what all other current demultiple methods
(e.g., Feedback loop methods, modeling and subtracting
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Input hydrophones (blue), receiver side deghosted (red)
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Fig. 1: SEAM Phase I data, shot 130305: (a) recorded pres-
sure wavefield at 17 m, (b) receiver-deghosted pressure wave-
field at the air-water boundary using Green’s theorem. The
horizontal axis is trace number, and the vertical axis is time
(s). Note the collapsed wavelet in the right panel. (c) Fre-
quency spectra of 2D field data, shot 841: input hydrophones
at 25 m (blue), receiver-deghosted pressure wavefield at the
air-water boundary using Green’s theorem (red). The receiver
notches around 30 Hz, 60 Hz, and 90 Hz have been filled in.
Input data courtesy of PGS. (Mayhan et al., 2011)

multiples, and filter methods) do not possess and cannot
deliver (Weglein and Dragoset, 2005).

The prerequisites for ISS demultiple algorithms can be
met by Green’s-theorem-based algorithms (Weglein and
Secrest, 1990; Weglein et al., 2002; Zhang and Weglein,
2005, 2006; Zhang, 2007). The ability of Green’s theo-
rem to meet prerequisites has been tested on SEAM and
field data (Mayhan and Weglein, 2013; Mayhan, 2013);
we show examples in Figure 1. When prerequisites are
satisfied, the prediction improves, as shown in Figures 2
and 4.

Free-surface-multiple removal with and without first re-
moving ghosts is shown in Figure 2. Using the model
shown in Figure 2(a), Figures 2(b) and 2(c) are the in-
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put data with and without ghosts, respectively. Inputting
them into the ISS free-surface-multiple-elimination algo-
rithm, Figures 2(d) and 2(e) are their corresponding free-
surface-multiple predictions. After subtracting from the
input data, Figures 2(f) and 2(g) show the correspond-
ing results after free-surface-multiple removal. If the in-
put data are not deghosted, the ISS free-surface-multiple-
removal method can predict the exact phase but only
an approximate amplitude of free-surface multiples. Af-
ter deghosting the data, we can see that all free-surface
multiples are predicted exactly, and, through a simple
subtraction, all are well eliminated, and, most impor-
tantly, primaries are not touched, as shown in Figure 2(g).
Other examples of removing free-surface multiples with
and without deghosting for simple synthetic data are
given in Zhang (2007) and Wang et al. (2012) (Figure 3).

Free-surface-multiple elimination and internal-multiple
attenuation with and without first removing the source
wavelet are shown in Figure 4. Each column is plotted
to the same scale. The left column uses the model in
Figure 2(a), and the right column uses a model with no
free surface and two reflectors. Figures 4(a), 4(c), and
4(e) show the input data and the predicted free-surface
multiples using the free-surface-multiple-elimination al-
gorithm with and without source wavelet deconvolution,
and Figures 4(b), 4(d), and 4(f) show the input data
and the predicted internal multiples using the internal-
multiple-attenuation algorithm with and without source
wavelet deconvolution. Figures 4(d) and 4(f) show that
the internal-multiple-attenuation algorithm predicts the
correct travel times but different amplitudes and shapes
for the internal multiples. In Figure 4(d), the amplitude
of the predicted internal multiple is comparable with the
internal multiple in the input data, while the amplitude
is totally different from that of the internal multiple in
the input data in Figure 4(f). Deconvolving the source
wavelet, as required by the internal-multiple-attenuation
algorithm, significantly improves the amplitude and shape
of the predicted internal multiple.

Current status

The current status of multiple removal for marine seis-
mic data is summarized in Table 1. Row (1): Satisfying
the prerequisites of the ISS (using Green’s theorem) is
relatively mature. Estimating the source wavelet and re-
moving ghosts have been tested on simple synthetic data,
SEAM data, and field data (Zhang, 2007; Mayhan, 2013).
Row (2): Free-surface-multiple elimination is also mature.
In principle, the ISS free-surface-multiple prediction al-
gorithm gives the exact amplitude and phase of the free-
surface multiples. Row (3): Internal-multiple attenuation
is also mature; it was tested on field data by Matson et al.
(1999), Terenghi et al. (2011), and Ferreira (2011). Work
is underway to eliminate spurious events (Ma and We-
glein, 2014) and move attenuation to elimination (Zou
and Weglein, 2014a,b). Row (4): Adaptive subtraction
using energy minimization is inconsistent; if multiples and
primaries are separated, it works, but not if multiples are
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Fig. 2: Free-surface-multiple removal with and without first
removing ghosts: (a) model used to create input data; (b) &
(c) input data with and without ghosts; (d) & (e) correspond-
ing ISS free-surface-multiple prediction; (f) & (g) after free-
surface-multiple removal through a simple subtraction. (Tang
et al., 2013)
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(b)

Green’s theorem deghosting

and

P(zg,zs,ω) = R

"
eik(2zwb−zg−zs)− eik(2zwb−zg+zs)

2ik

+
−eik(2zwb+zg−zs) + eik(2zwb+zg+zs)

2ik

#
. (4)

represents the water-bottom reflected primary and its source,
receiver, and source and receiver ghosts respectively. Here
k = ω/c0 is the wave number, R is the water-bottom reflec-
tion coefficient, zg is the receiver depth, zs is the source depth,
zwb is the water-bottom depth, and we suppose the free surface
is at depth 0 and the sources and receivers are placed between
free surface and water bottom (0 < zs < zg < zwb).

Substitute the Green’s function G0 and the wavefield P into
Equation 1 to perform receiver side deghosting,

Pdeghosted
receiver (z′g,zs,ω)

= [P(z,zs,ω)
dG+

0 (z,z′g,ω)
dz

−G+
0 (z,z′g,ω)

dP(z,zs,ω)
dz

]|z=zg

= R

"
eik(2zwb−z′g−zs)− eik(2zwb−z′g+zs)

2ik

#
. (5)

Here we assume z′g < zg, which means the predicted cable is
shallower than the actual cable. The receiver side ghosts are
removed and only the primary and its source side ghost remain
in Equation 5. Further, we feed the receiver side deghosted
data into Equation 2 for source side deghosting,

Pdeghosted(z′g,z′s,ω)

= [Pdeghosted
receiver (z′g,z,ω)

dG+
0 (z,z′s,ω)

dz

−G+
0 (z,z′s,ω)

dPdeghosted
receiver (z′g,z,ω)

dz
]|z=zs

=
Reik(2zw−z′g−z′s)

2ik
. (6)

Again we assume z′s < zs (e.g., the predicted source is shal-
lower than the actual source). The result of equation 6 is the
water bottom reflected primary, without source, receiver, or
source and receiver ghosts.
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Figure 2: Deghosting for model one.

NUMERICAL TESTING

The code used to compute the results in this abstract is the re-
ceiver side deghosting code written by J. Mayhan and released
in 2011 to the M-OSRP consortium. Changes were made to
accommodate both receiver and source side deghosting. As
mentioned above, we will use data with over/under sources
and over/under receiver cables.

The first tested case (Figure 1a) is a three layer model with
sources at 30m and 32m and receivers at 140m and 142m, such
that the ghosts are not overlapping either with the correspond-
ing primaries or among themselves. Figure 2b is the result after
receiver side deghosting and Figure 2c is source and receiver
side deghosting. Figures 2d, 2e, and 2f are the wiggle plots
of the zero-offset traces. We can see the ghosts are mainly
removed and the algorithm works with good accuracy.

The second tested case (Figure 1b) has 9 layers and is extracted
from a velocity model provided by TOTAL. In this case, we
choose the sources at 5m and 7m and receivers at 10m and
15m, so the events and their ghosts are overlapping. The data,
its receiver side deghosted result, and both source and receiver
side deghosted result are in Figures 3a, 3b, and 3c, respec-
tively. Figures 3d, 3e, and 3f represent the wiggle plots of
the zero-offset traces and Figures 3g, 3h and 3i are the spec-
trum plots of their wavelets. The notch at c0/(2d) = 1500/(2∗
12)hz = 62.5hz is removed after receiver side deghosting and
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Figure 3: Deghosting for model two.

both receiver side deghosting and source side deghosting re-
cover more low frequency information.

Results are positive and encouraging for both receiver side
deghosting and source side deghosting when the data with dual
sources and dual receiver cables are provided. Below we ex-
amine the consequences of two issues associated with the input
data:

1. One issue is that in common practice, the derivative of
the field (either through direct measurement or through
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Figure 4: Source deghosting using D f s = 0 for model two.

dual cables) may not be available, especially on the
source side. The industry trend has data with over/under
streamers available today, and sometimes over/under
sources, as well. However, Zhang (2007) uses Green’s
theorem to develop and exemplify a method that com-
pletely removes receiver and source ghosts with over/under
streamers/receivers or with a single streamer and a source
signature. The method does not require over/under sources.
Another method that can be applied is based on the no-
tion that the pressure field on the free surface D f s is
zero. This information can be used as another cable.
Figure 4 shows the result when this property is used
for model two. Comparing with the result using dual
sources (Figures 3), the source ghosts are satisfactarily
removed, although some high frequency information
has been damaged. For low-frequency, this could be
satisfactory.

2. Another issue is the sensitivity to how accurate the depth
of the cable is known due to a division if over/under ca-
bles are used. The Green’s theorem method is robust
to depth sensitivity (Zhang, 2007). Figure 5 compares
the results when different depth intervals are used for
receiver deghosting. The ghosts are well removed and
not visible after deghosting when the cable intervals
are 2 meters, 5 meters, or 10 meters. When the interval
gets to 20 meters, the ghosts are still largely attenuated
(comparing with Figures 2a and 2d).

IMPACT ON FREE-SURFACE MULTIPLE ELIMINATION

ISS free-surface multiple elimination method has the theoret-
ical capability of predicting the exact phase and amplitude of
multiples if its pre-requisites (source and receiver deghosting
in particular) are satisfied. Figure 6 shows the result of apply-
ing the deghosted data into ISS free-surface multiple elimina-
tion algorithm. The right half is generated by directly subtract-
ing the prediction from the input without any adaptive subtrac-
tion tool. We can see that all free-surface multiples are well
attenuated and primaries are not touched.

© 2012 SEG DOI  http://dx.doi.org/10.1190/segam2012-1246.1
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Fig. 3: (a) The constant-density acoustic model used for panel
(b). (b) Using receiver-array data, the calculated deghosting
results (blue dash) are compared to the exact deghosting re-
sults (red solid). The direct wave has been removed before
deghosting. Notice the small errors in amplitude. (Zhang,
2007) (c) The velocity model (provided by Total) used for panel
(d). (d) Spectrum plots of their wavelets: The left panel is be-
fore deghosting, the middle panel is receiver deghosted, and
the right panel is source and receiver deghosted. Both receiver
deghosting and source deghosting recover more low-frequency
information. (Wang et al., 2012)

(a)

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e(
s)

500 1000 1500 2000
Trace Number

(b)

(c)

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e(
s)

500 1000 1500 2000
Trace Number

(d)

(e)

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e(
s)

500 1000 1500 2000
Trace Number

(f)

Fig. 4: Impact of source wavelet on ISS free-surface-multiple
removal: (a) input data, (c) and (e) predicted free-surface
multiples with and without source wavelet deconvolution, re-
spectively (Yang and Weglein, 2012). Impact of source wavelet
on ISS internal-multiple attenuation: (b) input data, (d)
and (f) predicted internal multiples with and without source
wavelet deconvolution, respectively (Yang and Weglein, 2014).

proximal to or overlapping primaries. A possible replace-
ment for energy-minimization adaptive subtraction has
been proposed for free-surface-multiples (Weglein, 2012).

The current capability of multiple removal for onshore
seismic data is summarized in Table 2. Row (1): Using
Green’s theorem to satisfy ISS prerequisites, as is cur-
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Method Comment/status
1 Prerequisites Relatively mature

(estimate wavelet, deghost)
2 Free-surface multiples Eliminate
3 Internal multiples Attenuate
4 Adaptive Energy

minimization

Table 1: The current status of multiple removal (marine seis-
mic data).

rently performed for marine seismic data, is discussed in
Wu and Weglein (2014b), and a method for finding the
reference velocity in the near surface is discussed in Tang
and Weglein (2014). Row (3): The results of testing ISS
internal-multiple attenuation on land are encouraging; its
“performance was demonstrated with complex synthetic
and challenging land field data sets with encouraging re-
sults, where other internal multiple suppression meth-
ods were unable to demonstrate similar effectiveness” (Fu
et al., 2010). Row (4): “The examples of this paper point
to the pressing need to improve the prediction and reduce
the reliance on adaptive steps, since the latter can fail pre-
cisely when you have interfering events.” (Fu et al., 2010)

Method Comment/status
1 Prerequisites Find reference

velocity iteratively
(estimate wavelet, deghost)

2 Free-surface multiples Eliminate
3 Internal multiples Attenuate
4 Adaptive Energy minimization

Table 2: The current capability of multiple removal (onshore
seismic data).

Future plans

There is a three-pronged strategy to address the cur-
rent outstanding issues listed in Tables 1 and 2 (Weglein,
2014a,b). (1) Develop the ISS prerequisites for predict-
ing the reference wavefield (wavelet and radiation pat-
tern) and producing deghosted data (in particular, for on-
shore and ocean-bottom acquisition) that are direct and
do not require subsurface information; (2) Develop ISS
algorithms to reduce/eliminate so-called spurious events
and to eliminate (vs. attenuate) internal multiples; and
(3) Develop a replacement for the energy-minimization
criteria for adaptive subtraction, that derives from, and
always aligns with and serves, the inverse-scattering-series
free-surface and internal-multiple algorithms. This three-
pronged strategy represents a consistent and aligned pro-
cessing chain, with one single objective: providing a di-
rect and practical solution to the removal of all multiples,
without requiring any subsurface information, and with-
out damaging primaries. All three prongs are being pro-
gressed: (1) in Wu and Weglein (2014a,b), (2) in Zou and

Weglein (2014a,b) and Ma and Weglein (2014), and (3)
in Weglein (2012). This ideal status of multiple removal
(marine seismic data) is summarized in Table 3.

Method Comment/status
1 Prerequisites Mature

(estimate wavelet, deghost)
2 Free-surface multiples Eliminate
3 Internal multiples Eliminate
4 Adaptive Consistent with 1-3

Table 3: The ideal status of multiple removal (marine seismic
data).

The energy-minimization adaptive-subtraction criteria,
while not derived as a property of the free-surface-
multiple-elimination or internal-multiple-attenuation cri-
teria, is useful for completing the matching between mul-
tiple prediction and multiple, when events are separated
and there are no higher-order multiples in the vicinity,
and only a first-order algorithm is being used. Part of the
three-pronged strategy is to use the terms in the respec-
tive ISS subseries that can accommodate the order of mul-
tiple anticipated in the target region. Given deghosted
and wavelet-deconvolved data, there is a stable closed
form that eliminates all orders of free-surface multiples
at once (Weglein and Dragoset, 2005). With proximal
and/or interfering events the energy-minimization crite-
ria fails, independently of how it’s implemented (because
of interfering proximal events), and a new set of criteria is
sought for the adaptive step that derives from and aligns
with and always supports the multiple subseries. (A can-
didate for a replacement for energy-minimization adaptive
for free-surface multiples is given in Weglein (2012).)

Conclusions

This paper gives (1) an overview of removing multiples
from marine data and (2) motivation and preview for re-
moving multiples from onshore data. In principle, the
ISS free-surface-multiple prediction algorithm gives the
exact amplitude and phase of the free-surface multiples,
and the ISS internal-multiple-attenuation algorithm is the
high-water mark of current internal-multiple-attenuation
capability. The quality of their output assumes their re-
quirements are met, i.e., source wavelet deconvolved and
ghosts removed.
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Predicting reference medium properties from invariances in Green’s theorem reference wave predic-
tion: towards an on-shore near surface medium and reference wave prediction
Lin Tang∗ and Arthur B. Weglein, University of Houston

SUMMARY

The Inverse Scattering Series (ISS) methods require prerequi-
sites to reach their potential. Seismic data preprocessing for
ISS methods includes identifying and removing the reference
wave, estimating the source wavelet and radiation pattern, and
source and receiver deghosting. For on-shore seismic explo-
ration, these preprocessing steps still have many serious chal-
lenges. To study how to determine the reference velocity for
land application, this paper uses the marine environment and a
point source as a starting point, and shows that the invariance
of the estimated source signature for different output points
below the cable could be a criterion to find the correct refer-
ence velocity. In addition, for the case of a source signature
and radiation pattern, the invariance of the source wavelet in
one radiation angle could be the criterion for having the right
reference velocity.

INTRODUCTION

The current petroleum industry trend to deep water and com-
plex geology, where primary and multiple events may often
experience interfering or proximal with each other. In this
case, removal of the multiple events becomes a big challenge.
Inverse Scattering Series (ISS) methods offer a direct way of
removing free-surface multiples and attenuating internal mul-
tiples without requiring any subsurface information. How-
ever, these methods have prerequisites that need to be satisfied.
The prerequisites include identifying and removing the refer-
ence wave, estimating the source wavelet and radiation pat-
tern, and source and receiver deghosting. In order to deliver
the high fidelity of ISS multiple predictions, effective prepro-
cessing methods need to be developed and improved (Zhang
(2007), Mayhan et al. (2011), Mayhan and Weglein (2013),
Tang et al. (2013), Yang et al. (2013)).

As seismic exploration goes to more complex and difficult on-
shore and offshore plays, there are more fundamental issues
and challenges need to be resolved. Among these issues and
challenges, removal of the reference wave on land is one press-
ing and important topic. Why do we need to remove the refer-
ence wave first? Scattering theory separates the real world into
two parts: the reference medium, whose property is known,
plus a perturbation. The wave that travels in the reference
medium is called the reference wave, which does not expe-
rience the earth that we are interested in. So it is important to
identify the reference wave and remove it before the follow-
ing data processing steps, such as multiple removal and depth
imaging. We need to identify it because it also contains the in-
formation of the source signature, which is essential informa-
tion in the subsequent processing steps. ISS methods require
that the reference medium agrees with the actual medium on

and above the measurement surface (Weglein et al. (2003)).
Green’s theorem provides a good mathematical tool to achieve
these prerequisites that are consistent with the ISS methods
they are meant to serve.

For on-shore seismic application, the property of the medium
near surface is often complicated and not easy to determine,
e.g., because the conditions of rocks, soil or minerals in the
near surface are not easy to define due to weathering. Strong
ground roll could be generated that can obscure reflected seis-
mic data. To remove the ground roll/reference wave, the phys-
ical properties of the near surface is needed. Our purpose in
looking for a way to determine the velocity of near surface
medium on land, is to provide a foundation for the study of
on-shore seismic data preprocessing methods. It is part of
the comprehensive Inverse Scattering Series multiple removal
strategy.

In order to study the complex on-shore or ocean bottom near
surface property, we propose to start from seeking criteria which
can determine whether we have the correct reference medium
information or not. The criteria could be the presence of some
invariance that only the correct reference velocity would sat-
isfy. We use a marine seismic application as a starting point
to pursue this idea. First, consider an isotropic point source,
which has an isotropic source wavelet in every radiation di-
rection. Using Green’s theorem, we can estimate the wavelet
signature everywhere below the measurement surface. When
using the correct reference velocity, the results for the wavelet
should be invariant for all output points below the measure-
ment surface. Thus, the value of reference velocity we use in
the wavelet calculation that leads to an invariance of the es-
timated source wavelet is the correct reference velocity. Fur-
thermore, instead of a single point source, in practice, source
arrays which have angle radiation pattern are widely used in
industry (Loveridge et al. (1984)). Then the invariance of the
estimated wavelet will happen when estimating the wavelet at
different points along one radiation angle. Similarly, only the
correct reference velocity can lead to the invariance. Thus, the
invariances of the source wavelet indicate that we have found
the correct reference velocity.

This paper will discuss the criteria of predicting the reference
medium properties from invariances in Green’s theorem-based
wavelet estimation, for both a point source and for source array
cases. For a point source, the source wavelet estimated at any
points beneath the measurement surface should stay the same,
while for source array, estimated source wavelet results in one
radiation angle should be invariant. These invariances could be
criteria of having the correct reference velocity. Future study
will extend this research from marine example to complex on
shore elastic model.
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THEORY

Green’s theorem for wavelet estimation

The theory of wavelet estimation using Green’s theorem was
first described in Weglein and Secrest (1990). Assume that
source A(ω) is placed at ~rs and the receiver is at~r. The pres-
sure wavefield P satisfies constant density acoustic wave equa-
tion in the frequency domain,

(
∇2 +

ω2

c2(~r)

)
P(~r,~rs,ω) = A(ω)δ (~r−~rs) (1)

In scattering theory, we treat the actual medium as a combina-
tion of an unperturbed medium, called the reference medium,
plus a perturbation. Introduce perturbation α defined by

1
c2(~r)

=
1
c2

0
[1−α(~r)],

where c0 is the velocity in a homogeneous reference medium.
Then Equation 1 becomes
(

∇2 +
ω2

c2
0

)
P(~r,~rs,ω)=

ω2

c2
0

α(~r)P(~r,~rs,ω)+A(ω)δ (~r−~rs)

︸ ︷︷ ︸
ρ

.

(2)
The right hand side of the equation can be viewed as the source
of the wavefield P, which consists of two terms: the pertur-
bation α , which generates scattered wave Ps, and the active
source A(ω), the energy source that generates the wave, P.
The corresponding Green’s function satisfies,

(
∇2 +

ω2

c2
0

)
G0(~r,~r′,ω) = δ (~r−~r′). (3)

Having a causal Green’s function G+
0 , we can have wavefield

P,

P(~r,ω) =

∫

∞
G+

0 (~r,
~r′,ω)ρ(~r′,ω)d~r′

=

∫

∞
G+

0 (~r,
~r′,ω)

ω2

c2
0

α(~r′)P(~r′,ω)d~r′

+A(ω)G+
0 (~r,~rs,ω). (4)

The first term on the right hand side of Equation 4 is the source
that generates the difference between the total wavefield P and
the reference wavefield P0, where P0 = A(ω)G0.

On the other hand, from Green’s second identity, plugging P
and G0 in Equation 2 and Equation 3 in, we have,

∫

V
(P∇′2G0−G0∇′2P)d~r′

=

∫

V

(
P(~r′,~rs,ω)

[
−ω2

c2
0

G0(~r′,~r,ω)+δ (~r−~r′)
]

−G0(~r′,~r,ω)

[
−ω2

c2
0

P(~r′,~rs,ω)+ρ(~r′)
])

d~r′

=

∫

V
P(~r′,~rs,ω)δ (~r−~r′)d~r′

−
∫

V
G0(~r′,~r,ω)

[
ω2

c2
0

α(~r′)P(~r′,~rs,ω)+δ (~r′−~rs)A(ω)

]
d~r′

=

∮

S
dSn̂ ·

[
P(~r′,~rs,ω)∇′G0(~r′,~r,ω)−G0(~r′,~r,ω)∇′P(~r′,~rs,ω)

]
(5)

When choosing the volume as the infinite space below the
measurement surface, and ~r is chosen to be below the mea-
surement surface (inside the volume V), as shown in Figure 1.
Equation 5 becomes

P(~r,~rs,ω) =

∫

V
G0(~r,~r′,ω)

ω2

c2
0

α(~r′)P(~r′,~rs,ω)d~r′

+

∮

S

[
P∇′G0−G0∇′P

]
· n̂dS. (6)

Choosing G+
0 in Equation 6, let’s compare Equation 6 and

Equation 4. When the support of perturbation α(~r) is within
the volume V, the integral of α over infinity equals integral
over volume V. Thus, with~r inside the volume, the support of
α within the volume, both Equations 6 and 4 should give the
same wavefield. Therefore,

A(ω)G+
0 (~r,~rs,ω)

=

∮

S
dSn̂ ·

[
P(~r′,~rs,ω)∇′G+

0 (
~r′,~r,ω)−G+

0 (
~r′,~r,ω)∇′P(~r′,~rs,ω)

]
.(7)

So source signature A(ω) can be estimated by a surface inte-
gral and then divided by the Green’s function. Using Sommer-
feld’s radiation condition for G+

0 , the wavefield contribution at
~r in V from the infinite far away boundary vanishes. Then,

A(ω) =
1

G+
0 (~r,~rs,ω)

·
∫

m.s.
dSn̂ ·

[
P(~r′,~rs,ω)∇′G+

0 (
~r′,~r,ω)−G+

0 (
~r′,~r,ω)∇′P(~r′,~rs,ω)

]
. (8)

From Equation 8, we can see that the wavelet A(ω) is indepen-
dent of the observation point~r. The estimation result of source
wavelet should stay the same at any observation point~r below
the measurement surface . This condition will only hold when
using the correct reference velocity. Therefore, the invariance
of the estimated wavelet can be a criterion of having the correct
reference velocity. Later, we will present test result to support
this conclusion.

Radiation pattern
In the previous section, we focused on solving the wavelet
from a point source at δ (~r−~rs). In a more general case, a ex-
tended source array that consists of several point source could
be used in seismic exploration. In this case, the source displays
a radiation pattern in different radiation angles. The radiation
pattern from a single effective point source could be estimated
by assuming that A(ω) is a function of the radiation angle θ
(using far field approximation).

Assume that a general extended source ρ(~r) as Figure 2 shows.
Wavefield at~r generated from this source array can be calcu-
lated from the integral,

P0(~r,ω) =

∫
G0(~r,~r′,ω)ρ(~r′)d~r′. (9)
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In 3D propagation, Green’s function in frequency domain can
be written as

G0(~r,~r′,ω) =
eik|~r−~r′|

|~r−~r′|
. (10)

In the far field, |~r|>> |~r′|, we have approximation,

|~r−~r′| =

√
(~r−~r′)2

=
√

r2−2~r ·~r′+ r′2

= r[1− 2~r ·~r′
r2 +

r′2

r2 ]1/2

= r(1−~r ·
~r′

r2 +
r′2

2r2 + ...)

= r− n̂ ·~r′+O(
1
r
). (11)

The above equation uses Taylor series (1+ x)1/2 = 1+ 1
2 x+

O(x2), and n̂ is the unit vector in the direction of~r. And simi-
larly,

1

|~r−~r′|
=

1
r
+

n̂ ·~r′
r2 + ...=

1
r
+O(

1
r2 ). (12)

Then in the far field, Equation 9 becomes

P0(~r,ω) =

∫
eik(r−n̂·~r′)

r
ρ(~r′)d~r′

=
eikr

r

∫
e−ikn̂·~r′ρ(~r′)d~r′

=
eikr

r
ρ̃(kn̂). (13)

Therefore, in the far field if we process seismic data generated
from the source array as if a point source, we can get the source
wavelet

A(ω,θ) =
P0

G0
= ρ̃(kn̂).

Since n̂ is the direction from the source to the observation
point, the estimated wavelet result will display variances in
different radiation angle. While in one radiation angle, wavelet
A(ω,θ) will be the same. This could be a criterion of deter-
mining the correct reference velocity. If using a wrong refer-
ence velocity, this invariance at one radiation angle will not be
satisfied.

POINT SOURCE

In this test, we use Cagnidard-de Hoop method to model over-
under cable data. Then using Green’s theorem of Equation 8,
we estimate the wavelet, A(ω), at different points at a fixed
depth below the cable. We predict the estimated wavelet re-
sults using different reference velocities:

(1) correct reference velocity c0 = 1500m/s;
(2) wrong reference velocity c0 = 1490m/s;

(3) further wrong reference velocity c0 = 1450m/s.

The estimated reference wavefields P0 are shown in Figure 3,
and corresponding wavelet results in Figure 4. Figure 3 in-
dicates that the wrong reference velocities also lead to errors
in the prediction of P0. The estimated source wavelet results
show that when using the correct reference velocity, the wavelet
displays invariance at different offset, while wrong velocities
give different wavelet prediction at different output points.

Therefore, only the correct reference velocity can result in the
invariance of estimated wavelet. When the velocities are fur-
ther from the reference velocity, the errors of wavelet invari-
ance also becomes larger. This conclusion will also help us in
finding the correct reference velocity.

water 

sr

Earth 

r

Measurement surface 

V 

S 

Figure 1: Volume chosen as half infinite space below the mea-
surement surface.

x 

z 

0 
r’ 

r 

θ 

y 

Figure 2: A general extended source.

SOURCE ARRAY

In this section, instead of a point source, data generated by a
source array will be tested. The source array consists of 7 point
sources separated at 3 m, as shown in Figure 5. First, we will
estimate source wavelet along a horizontal cable, whose radi-
ation angles are different. We predict source wavelet at depth
56 m, from offset 0 m to 606 m, whose radiation angles are
from 0◦ to 85◦. The results in Figure 5 show the radiation pat-
tern in different offset (radiation angle). Next, we estimate the
wavelet A(ω,θ) in one radiation angle. The estimated wavelet
in angle 5.8◦ using different velocities is shown in Figure 7.
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(a) (b) (c) 

Figure 3: P0 estimated using (a) correct c0 = 1500m/s, (b)
wrong c0 = 1490m/s, (c) wrong c0 = 1450m/s.

(a) 

(b) 

(c) 

Figure 4: A(t) estimated using (a) correct c0 = 1500m/s, (b)
wrong c0 = 1490m/s, (c) wrong c0 = 1450m/s

Similar to the conclusion above, we can see that only the cor-
rect velocity gives us the invariance of the source array wavelet
in one angle, while the wrong reference velocity will lead to
differences of the wavelet in one radiation angle.

CONCLUSIONS

We have shown that an output point invariance of the estimated
wavelet using Green’s theorem could be a criterion for de-
termining the correct reference velocity. For a point source,
the invariance occurs for the output point anywhere below the
measurement surface, while for a source array, the invariance

18m 

3m 

Figure 5: Source array

Figure 6: Radiation pattern of source array in Figure 5, esti-
mated from offset 0m to 606m.

(a) (b) 

Figure 7: Wavelet estimated at depth 36m, 56m, 76m, 96m,
116m, 136m, 156m in the same radiation angle using (a) cor-
rect reference wave c0 = 1500m/s and (b) wrong reference
velocity c0 = 1450m/s.

is for output points along one radiation angle. Using marine
seismic application as a starting point, this paper shows that in-
variances of Green’s theorem-based wavelet estimation could
be a criterion of determining the reference velocity. Using sim-
ilar thinking, in the future study we will focus on solving the
complex on-shore or ocean bottom near surface medium prob-
lems. For on-shore or ocean bottom problems, understanding
of the near surface property could enable us to predict and re-
move the ground roll/reference wave on land, and thereby en-
hance the capability of subsequent multiple removal process-
ing steps for the challenge of on-shore multiple attenuation.
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Elastic Green’s theorem preprocessing for on-shore internal multiple attenuation: theory and initial
synthetic data tests
Jing Wu and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

Prerequisites are important for the Inverse Scattering Series
(ISS) multiple removal method, that assumes reference wave
field has been removed and the source wavelet has been de-
convolved. This paper derives the elastic Green’s theorem ref-
erence wave prediction algorithm, which extends the off-shore
acoustic to the on-shore elastic wave field separation, in prepa-
ration for on-shore ISS internal multiple attenuation.

INTRODUCTION

Weglein (2013) proposes a three-pronged strategy to respond
to the current pressing challenges in removing multiples: (1)
develop the ISS prerequisites for predicting the reference wave
field and producing deghosted data that are direct and do not
require subsurface information; (2) develop internal multiple
elimination algorithms from the ISS; (3) develop a replace-
ment for the energy-minimization criteria for adaptive subtrac-
tion. For part (1), Green’s theorem preprocessing has docu-
mented effectiveness for off-shore plays (e.g., Weglein et al.,
2002; Zhang, 2007; Mayhan et al., 2012; Mayhan and Weglein,
2013; Tang et al., 2013; Yang et al., 2013).

For on-shore plays, because of their complex structures with
lateral variation, as well as significant ground roll, there are
more fundamental issues and challenges for resolving the near
surface problem. Among these issues and challenges, identifi-
cation and removal of the reference wave is one pressing and
essential topic. Scattering theory separates the real world into
two parts: the reference medium, whose property is known,
plus a perturbation. The wave that travels in the reference
medium is called the reference wave, which does not expe-
rience the earth that we are interested in (Weglein et al., 2003;
Tang and Weglein, 2014). Especially for on-shore, the ground
roll as the main energy of the reference wave can obscure
the reflections. In addition, the reference wave contains the
source signature information, which is important and will be
used for deconvolution before the subsequent ISS multiple re-
moval. Therefore, it’s an important step to identify and remove
the reference wave field on land.

Matson (1997) provides the ISS free surface multiple elimina-
tion and internal multiple attenuation algorithms in PS space,
i.e., by using potentials, rather than displacements. He as-
sumes the reference wave has been removed by using linear
mute; however, the linear mute may harm/destroy useful infor-
mation, especially when the reference wave and the scattering
wave are seriously interfering with each other. Weglein and
Secrest (1990) propose the reference wave prediction method
for the elastic media based on Green’s theorem, and derive the
wavelet estimation algorithm in displacement space. When the
medium is assumed to consist of a homogeneous elastic whole

space, Jiang et al. (2013) test the algorithm.

In order to simulate the land acquisition situation, we choose
two homogeneous half spaces as the reference medium, an
acoustic half-space over an elastic half-space. We locate the
source in the acoustic medium and receivers in the elastic medium.
The perturbation will be in the lower elastic half-space. By us-
ing Green’s second identity, we derive the algorithm to sepa-
rate the reference wave and scattering wave in PS space. In this
paper, the algorithms are derived in both the space-frequency
domain and the wavenumber-frequency domain. The wavelet
can be estimated from the predicted reference wave. Numer-
ical tests are shown to evaluate the accuracy of the algorithm
for predicting the source wavelet for this acoustic over elastic
half-space problem, that models the on-shore play acquisition.
The results are positive and encouraging.

BACKGROUND FOR 2D ELASTIC MEDIUM

We are deriving the wave field separation method for on-shore
application and we start with the elastic formulation. For con-

venience, the basis is changed from u=

(
ux
uz

)
to Φ=

(
φ P

φ S

)
.

u has x and z components; whereas Φ has potential compo-
nents for P wave and S wave.

In PS space, the basic wave equations (Weglein and Stolt, 1995;
Zhang, 2006) are

L̂Φ = F, (1)
L̂Ĝ = δ , (2)

L̂0Φ0 = F, (3)
L̂0Ĝ0 = δ , (4)

where L̂ and L̂0 are the differential operators that describe the
wave propagation in the actual and the reference media, re-
spectively. F is the source term. Ĝ and Ĝ0 are the correspond-
ing Green’s function operators for the actual and reference me-
dia.

For a homogeneous medium,

L̂0 =


 52 + ω2

α2
0

52 + ω2

β 2
0


=

(
L̂P

0
L̂S

0

)
, (5)

and

Ĝ0 =

(
ĜP

0
ĜS

0

)
. (6)

Equations 5 and 6 are diagonal. However, in an actual inho-
mogeneous medium, Ĝ is no longer a diagonal matrix, but has
a form

Ĝ =

(
ĜPP ĜPS

ĜSP ĜSS

)
. (7)

For the superscripts, the right one represents the wave type of
source side, whereas the left one represents the wave type of
receiver side.



GREEN’S THEOREM WAVE FIELD SEPARATION AL-
GORITHM IN PS SPACE

Problem Description

Transforming the elastic wave equations from the displace-
ment space to the PS space, we have

L̂Φ = F,

L̂0Ĝ0 = δ ,

L̂ = L̂0−V̂ . (8)

The basic form of these equations is the same as in the acous-
tic case. Based on the successful applications of Green’s the-
orem wave field separation in the acoustic case (e.g., Zhang,
2007; Mayhan et al., 2012), it’s feasible to apply Green’s the-
orem wave field separation algorithm to the elastic medium in
a similar way. The reference medium (L̂0) can be chosen for
different objectives. To separate the reference and the scatter-
ing wave, the reference medium should be chosen equal to the
actual medium above the measurement surface.

Figure 1: On-shore acquisition

For land acquisition, we assume that the source is located slightly
above the earth’s surface (e.s.), and the geophone is in the
earth but close to the earth’s surface shown as Fig.1. Actu-
ally, because of weathered layer and tundra, the property of
near surface can be complicated, with lateral varying densi-
ties and velocities. For this initial study, we assume that the
medium, which is below the earth’s surface and above mea-
surement surface (m.s.), is homogeneous. The reference wave
can be predicted in any point inside the volume in Fig.1 by
using Green’s theorem.

Reference Wave Field Prediction in PS Space

In Fig.2, source (rs) is above the earth’s surface, i.e., the bound-
ary, receiver (r′) is on the measurement surface, and the pre-
diction location is represented by r. The reference medium is
chosen as a discontinuous two-half-space medium, above the
boundary is homogeneous air, below is homogeneous elastic.
A hemispherical surface integral upper bounded by the mea-
surement surface will separate the total wave Φ into the refer-
ence wave Φ0 and the scattering wave ΦS. The prediction in
the volume is the reference wave Φ0 as shown in Fig.2.

The elastic Green’s theorem algorithm in the space-frequency
domain for the reference wave prediction in the volume is

Φ0(r,rs)=

∮ (
Φ(r

′
,rs) ·∇

′
Ĝ0(r

′
,r)−∇

′
Φ(r

′
,rs) · Ĝ0(r

′
,r)
)
· n̂dS′,

(9)

Figure 2: Volume enclosed (blue dashed line) for reference
wave field prediction at r in the volume and r is under the
measurement surface that is represented by r′.

where Φ0(r,rs)=

(
ΦP

0 (r,rs)

ΦS
0(r,rs)

)
, Φ(r,rs)=

(
ΦP(r,rs)

ΦS(r,rs)

)
,

and Green’s function for the reference medium in the (r,ω) do-
main is

Ĝ0(r
′
,r)

=

(
ĜP

0 (r
′
,r)+ ĜPP

0 (r′ ,r) ĜPS
0 (r′ ,r)

ĜSP
0 (r′ ,r) ĜS

0(r
′
,r)+ ĜSS

0 (r′ ,r)

)

=
1

2π

∫
eikx(x′−x)dkx



(

eiv2 |z′−z|
2iv2

0

0 eiη2 |z′−z|
2iη2

)
+


 ṔP̀ eiv2zeiv2z′

2iv2
ŚP̀ eiη2zeiv2z′

2iη2

ṔS̀ eiv2zeiη2z′

2iv2
ŚS̀ eiη2zeiη2z′

2iη2






,

(10)
where ṔP̀, ṔS̀, ŚP̀, ŚS̀ represent the reflection coefficients along
the boundary, respectively, and

v2 =





√
k2

α2 − k2
x i f kx < kα2

i
√

k2
x − k2

α2 i f kx > kα2

kα2 =
ω
α2

,

η2 =





√
k2

β2
− k2

x i f kx < kβ2

i
√

k2
x − k2

β2
i f kx > kβ2

kβ2
= ω

β2
.

Since both Φ and Ĝ0 in the integral are tensors, the symbol ′·′
represents a tensor product.

If the measurement surface is horizontal, n̂ = (0,−1), and it
represents the outward normal vector directs upward. The al-
gorithm can be simplified as:

Φ0(r,rs)= −
∫ (

Φ(r
′
,rs) ·∂ z′Ĝ0(r

′
,r)−∂ z′Φ(r

′
,rs) · Ĝ0(r

′
,r)
)

dx′.

(11)
Using the reciprocity of Green’s function and Fourier trans-
forming over x, the algorithm in the wavenumber-frequency
domain for the reference wave prediction in the volume can be
obtained:

Φ̃0(kx,z,rs)=−Φ̃(kx,z,rs)·∂ z′ ˜̂GT
0 (kx,z,r

′
)+∂ z′Φ̃(kx,z,rs)· ˜̂GT

0 (kx,z,r
′
),

(12)
where ˜̂GT

0 is the transverse of ˜̂G0.

With the separated reference wave from the total wave, the
wavelet A(ω) can be estimated. Since

(
ΦP

0 (r,rs,ω)

ΦS
0(r,rs,ω)

)
=

(
A(ω)ĜPP

0 (r,rs,ω)

A(ω)ĜSP
0 (r,rs,ω)

)
, (13)



A(ω) can be obtained by either

A(ω) =
ΦP

0 (r,rs,ω)

ĜPP
0 (r,rs,ω)

or A(ω) =
ΦS

0(r,rs,ω)

ĜSP
0 (r,rs,ω)

, (14)

where

ĜPP
0 (r,rs,ω) =

1
2π

∫
P̀P̀

e−iv1zs eiv2z

2iv1
eikx(x−xs)dkx,

ĜSP
0 (r,rs,ω) =

1
2π

∫
P̀S̀

e−iv1zs eiη2z

2iv1
eikx(x−xs)dkx,

(15)

and v1 =





√
k2

α1 − k2
x i f kx < kα1

i
√

k2
x − k2

α1 i f kx > kα1

kα1 =
ω
α1

,

and P̀P̀, P̀S̀ represent the transmission coefficients along the
boundary, respectively.

NUMERICAL EVALUATION

Since the methodology in this paper chooses the reference medium
above the earth’s surface to be acoustic, either fluid (water) or
air can be chosen as the medium above the earth’s surface.
Those two cases would correspond to ocean bottom and on-
shore applications, respectively. In this section, two models
are chosen to evaluate Green’s theorem wave field separation
algorithm, one is water/elastic, and the other is air/elastic.

Water/Elastic Model

A water/elastic model is first selected to examine the accuracy
of the algorithm. The parameters are listed in Table 1. The
water/elastic boundary is at depth 0m, the source’s depth is -
5m, and the measurement’s depth is 0m (on the boundary) but
coupled with the lower elastic. The trace interval is 2m.

Layer
Number

P Velocity
(m/s)

S Velocity
(m/s)

Density
(kg/m3)

1 1500 0 1000
2 2250 1200 2000

Table 1: The water/elastic model parameters

Since there is no perturbation from earth in this model, the
reference medium is the same as the actual one. Therefore, if
the prediction point in the elastic medium is close to depth 0m,
the predicted reference wave should be the same as the total
wave. This will serve as a criteria later to test the algorithm.

P wave is produced by source in the water, and transmitted P
and S waves will be collected by the receivers in the elastic
medium. The synthetic data are generated by multiplying a
wavelet with the analytical forms of Green’s function in the
frequency domain (equation 13), shown in Fig.3(a) for PP and
Fig.4(a) for SP. The most significant energy of the total wave
is surface waves since source and receivers are very close to
the boundary. The direct waves have relatively weaker energy.

The predicted reference P waves (PP0) and S waves (SP0)
are listed in Fig.3(b) and Fig.4(b), respectively, and as antic-
ipated are similar to the input data. Traces with offset 400m

are extracted for further comparison, as shown in Fig.3(c) and
Fig.4(c). The prediction results match well with input data,
which confirm the effectiveness of our wave field separation
algorithm.

After obtaining the reference wave, the wavelet can be esti-
mated by using equation 14. The results of comparison be-
tween the actual wavelet (red line in Fig.3(d)) and the wavelet
estimated from PP0 at offset 400m (blue line in Fig.3(d)), and
the actual wavelet (red line in Fig.4(d)) and the wavelet esti-
mated from SP0 at offset 400m (blue line in Fig.4(d)) further
confirm the accuracy of the wavelet estimation algorithm.
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Figure 3: Numerical result for water/elastic model. (a): input
data PP; (b): predicted reference wave PP0 at depth 0m; (c):
traces with offset 400m, red line for PP, blue line for PP0; (d):
actual wavelet (red line) and wavelet estimated from PP0 at
offset 400m (blue line). Figures in (a) and (b) are in the same
scale.

Air/Elastic Model

An air/elastic model is selected to examine the accuracy of the
algorithm. The parameters are listed in Table 2. The depth
of source is 0m, and we arrange the boundary as belonging to
the upper half-space of air; whereas the depth of receiver is
5m and it is inside the elastic half-space. The prediction depth
is chosen to be 25m. The result will confirm the theory that
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Figure 4: Numerical result for water/elastic model. (a): input
data SP; (b): predicted reference wave SP0 at depth 0m; (c):
traces with offset 400m, red line for SP, blue line for SP0; (d):
actual wavelet (red line) and wavelet estimated from SP0 at
offset 400m (blue line). Figures in (a) and (b) are in the same
scale.

Green’s theorem algorithm can predict the reference wave at
any point in the volume, and the volume is upper bounded by
the measurement surface. The trace interval is 2m.

Layer
Number

P Velocity
(m/s)

S Velocity
(m/s)

Density
(kg/m3)

1 340 0 3
2 2250 1200 2000

Table 2: The air/elastic model parameters

The synthetic input data PP and SP are similarly generated
as in the first case, as shown in Fig.5(a) and Fig.5(d). The
predicted reference waves are shown in Fig.5(b) for PP0 and
Fig.5(e) for SP0. In order to confirm the result, the analytical
data (by multiplying the original wavelet with the analytical
forms of Green’s function in the frequency domain) for a re-
ceiver at depth 25m are also listed in Fig.5(c) and Fig.5(f).
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Figure 5: Numerical result for air/elastic model. (a): input data
PP; (b): predicted reference wave PP0 at depth 25m; (c): an-
alytical reference wave PP0 at depth 25m; (d): input data SP;
(e): predicted reference wave SP0 at depth 25m; (f): analytical
reference wave SP0 at depth 25m. All the figures are in the
same scale.

CONCLUSION AND FUTURE PLAN

From the theoretical derivation and numerical tests in this pa-
per, we understand that it’s possible to apply the Green’s the-
orem wave field separation algorithm on land. For on-shore
application, the reference medium consists of two half spaces:
one acoustic and the other elastic. This will provide a possible
way to remove ground roll, which has the majority of the en-
ergy of the reference wave for on-shore acquisition. In order
to apply Green’s theorem to remove ground roll for practical
complicated land acquisition data, a modified reference model
and further research are required.
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Incorporating the source wavelet and radiation pattern into the internal multiple attenuation algo-
rithm
Jinlong Yang∗ and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

The inverse scattering series internal multiple attenuation (ISS
IMA) algorithm (Araújo et al., 1994; Weglein et al., 1997) is
modified and extended by incorporating the source wavelet
and radiation pattern in order to enhance the fidelity of the
amplitude and phase predictions of the internal multiple. The
modified ISS IMA algorithm is fully data-driven to predict all
first-order internal multiples for all horizons at once, without
requiring any subsurface information. In synthetic data tests,
for data produced by a point source with a wavelet, the ampli-
tude and shape of the predicted internal multiples are signifi-
cantly improved by incorporating the source wavelet deconvo-
lution. For data generated by a general source with a radiation
pattern, the prediction is further improved by incorporating the
source wavelet and radiation pattern into the algorithm. There-
fore, the modified ISS IMA algorithm produces more accurate
results when the data are generated by a frequency and angle
dependent source.

INTRODUCTION

In seismic exploration, seismic reflection events are classified
as primary or multiple, depending on whether the energy arriv-
ing at the receiver has experienced one or more upward reflec-
tions, respectively. Methods for seismic imaging and param-
eter estimation (inversion) assume that the data contain only
primaries. Multiples are considered to be noise because they
can interfere with primaries and/or be misinterpreted as pri-
maries. Hence, multiple removal is a prerequisite to seismic
imaging and inversion.

This abstract will focus on internal multiple attenuation and
will analyze and test the impact of incorporating the source
wavelet and radiation pattern on internal multiple prediction.
The ISS IMA algorithm was first proposed by Araújo et al.
(1994) and Weglein et al. (1997). It is a fully data-driven
and model-type independent algorithm (Weglein et al., 2003),
and it predicts the correct traveltimes and approximate ampli-
tudes of all internal multiples at all depths at once. Matson
et al. (1999) extended the theory for land and OBC applica-
tions. Ramı́rez and Weglein (2005) discussed how to extend
the ISS IMA algorithm from attenuation toward elimination
of multiples. Herrera and Weglein (2013) developed the 1-D
ISS internal multiple elimination algorithm for internal mul-
tiple generated by a single shallowest reflector and Zou and
Weglein (2013) further derived a general form of the ISS inter-
nal multiple elimination algorithm.

The ISS IMA algorithm has certain data requirements: (1)
removal of the reference wavefield, (2) an estimation of the
source wavelet and radiation pattern, (3) source and receiver
deghosting, and (4) removal of the free-surface multiples. The

first three requirements can be obtained by Green’s theorem
methods (Zhang and Weglein, 2005; Mayhan et al., 2012; Tang
et al., 2013) and the free-surface multiples can be removed by
the ISS free-surface multiple elimination algorithm (Carvalho,
1992; Weglein et al., 2003; Yang et al., 2013). Green’s the-
orem methods and the ISS free-surface multiple elimination
algorithm are consistent with the ISS IMA algorithm, since
all are multidimensional wave-theoretic preprocessing meth-
ods and do not require subsurface information.

The ISS IMA algorithm assumes that the input data are spike
wave. In other words, the input data have been deconvolved.
If the input data are generated by a source wavelet instead of
by a spike wave, the predicted internal multiple has convolved
at least three source wavelets. Hence, the source wavelet has a
significant effect on the amplitude and shape of the predicted
internal multiple. In this paper, to improve the amplitude and
the shape of a predicted internal multiple, the ISS IMA algo-
rithm is extended to accommodate a source wavelet.

In addition, the ISS IMA algorithm assumes an isotropic point
source, i.e., it assumes that the source has no variation of am-
plitude or phase with take-off angle. A large marine air-gun ar-
ray will exhibit directivity and produce variations of the source
signature (Loveridge et al., 1984). In on-shore exploration,
even if there is no source array, the source can have radiation
pattern or directivity. That directivity has significant effects on
multiple removal or attenuation and AVO analysis. In seismic
data processing, it is important that we characterize the source
array’s effect on any seismic processing methods. Therefore,
to further improve the effectiveness of the ISS IMA algorithm,
it is extended to accommodate a source wavelet and radiation
pattern. The synthetic data tests show that accommodating the
source wavelet and radiation pattern can enhance the fidelity
of the amplitude and phase predictions of internal multiples.

THEORY

The ISS IMA algorithm (Araújo, 1994; Weglein et al., 1997,
2003) for first-order internal multiple prediction in a 2D earth
is given by

b3(kg,ks,ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk1e−iq1(zg−zs)dk2eiq2(zg−zs)

×
∫ ∞

−∞
dz1b1(kg,k1,z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1,k2,z2)e−i(q1+q2)z2

×
∫ ∞

z2+ε
dz3b1(k2,ks,z3)ei(q2+qs)z3 , (1)

where ω , ks and kg are temporal frequency and the horizon-
tal wavenumbers for source and receiver coordinates, respec-
tively. qs and qg are the corresponding vertical source and re-
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ceiver wavenumbers, respectively. qi = sgn(ω)
√

ω2/c2
0− k2

i
for i = (g,s); c0 is the reference velocity. zs and zg are the
source and receiver depths; and zi (i = 1,2,3) represents pseu-
dodepth (vertical depth of the water speed migration). The
parameter ε is introduced to insure that the relations z1 > z2
and z3 > z2 are satisfied.

From the first-order equation of the inverse scattering series
D = Gd

0V1Pd
0 (Weglein et al., 2003), which can be represented

explicitly in 2-D case as

D(xg,εg,xs,εs,ω) =
∫

dx1
∫

dz1
∫

dx2
∫

dz2

Gd
0(xg,εg,x1,z1,ω)V1(x1,z1,x2,z2,ω)Pd

0 (x2,z2,xs,εs,ω),(2)

where the data D have been deghosted and the reference wave-
field and free-surface multiples have been removed. Gd

0 and
Pd

0 are the direct reference Green’s function and the direct ref-
erence wavefield, respectively.

For a unit source, Pd
0 = Gd

0 . We take a Fourier transform over
xs and xg on both sides of equation 2 and define b1 as

b1(kg,ks,qg +qs)≡
V1(kg,qg,ks,qs,ω)

−2iqg
=−2iqsD(kg,ks,ω),

(3)
where b1 represents effective plane-wave incident data and
D(kg,ks,ω) is the Fourier-transformed prestack data. The in-
put b1 are introduced into equation 1 after an uncollapsed Stolt
migration (Weglein et al., 1997) that takes b1(kg,ks,qg + qs)
into the pseudodepth domain, b1(kg,ks,zi), by using the ref-
erence velocity, c0. Then, the first-order internal multiples
D3(kg,ks,ω), which are predicted by the ISS IMA algorithm
(equation 1), are obtained by

D3(kg,ks,ω) = (−2iqs)
−1b3(kg,ks,qg +qs). (4)

For an isotropic point source, Pd
0 = A(ω)Gd

0 . Fourier trans-
forming over xs and xg on both sides of equation 2 gives

b1(kg,ks,qg +qs) =−2iqsD(kg,ks,ω)/A(ω), (5)

where A(ω) is the source signature. After b3 has been pre-
dicted by equation 1, the first-order internal multiple is achieved
by convolving the source wavelet A(ω) back

D3(kg,ks,ω) = (−2iqs)
−1A(ω)b3(kg,ks,qg +qs). (6)

For a general source with a radiation pattern (e.g., a source ar-
ray), the direct reference wavefield Pd

0 for a 2D case can be
expressed as an integral of the direct reference Green’s func-
tion Gd

0 over all air-guns in an array,

Pd
0 (x,z,xs,zs,ω)=

∫
dx′dz′ρ(x′,z′,ω)Gd

0(x,z,x
′+xs,z′+zs,ω),

(7)
where (x,z) and (xs,zs) are the prediction point and source
point, respectively. (x′,z′) is the distribution of the source with
respect to the source locator (xs,zs). Using the bilinear form
of Green’s function and Fourier transforming over x, we obtain
the relationship between ρ and Pd

0 as

Pd
0 (k,z,xs,zs,ω) = ρ(k,q,ω)

eiq|z−zs|

2iq
eikx. (8)

On the other hand, the reference wavefield Pd
0 can be solved

from the measured data by using Green’s theorem method (We-
glein and Secrest, 1990).

Since k2 + q2 = ω2/c2
0, q is not a free variable, hence, we

can not obtain ρ(x,z,ω) in space-frequency domain by tak-
ing an inverse Fourier transform on ρ(k,q,ω). However, the
projection of the source signature ρ(k,q,ω) can be achieved
directly from the direct reference wavefield Pd

0 in the f -k do-
main, where the variable k or q represent the amplitude varia-
tions of the source signature with angles.

Substituting the projection of the source signature ρ into equa-
tion 2 and Fourier transforming over xs and xg gives

b1(kg,ks,qg +qs) =−2iqsD(kg,ks,ω)/ρ(kg,qg,ω). (9)

Further details of obtaining ρ can be found in Yang et al. (2013)
and Yang and Weglein (2013). The first-order internal multiple
is calculated from b3,

D3(kg,ks,ω) = (−2iqs)
−1ρ(kg,qg,ω)b3(kg,ks,qg +qs).

(10)
All above derivations are 2D cases, and they can be directly
extended to 3D. From the derivations, we can see that the ker-
nel of the ISS IMA algorithm (equation 1) is not change and
the source wavelet and radiation pattern are imported by equa-
tions 5 and 9. The predicted internal multiples D3 are also
affected by the source wavelet and radiation pattern in equa-
tions 6 and 10. If the source wavelet is not incorporated into
the ISS IMA algorithm, the amplitudes and shapes of the pre-
dicted internal multiples are not comparable with those of the
internal multiples in the input data. To improve the effective-
ness of the internal multiple prediction, the ISS IMA algorithm
should be modified for its input and output by accommodating
the source wavelet and radiation pattern. This accommodation
can enhance the fidelity of the amplitude and shape of the pre-
dictions of internal multiples.

NUMERICAL TESTS

In this section, we will present the numerical tests of the inter-
nal multiple prediction for the data generated by a point source
and a general source with a radiation pattern. The numerical
tests are based on a 1D acoustic model with varying velocity
and constant density, as shown in Figure 1. The synthetic data
that are generated by the finite-difference method. The data
have one shot gather with 2001 traces, and each trace has 301
time samples, with dt = 5ms. The trace interval is 5m.

The source wavelet effect on internal multiple prediction

For the data generated by a point source, the internal multiple
will be predicted by using the ISS IMA algorithm with and
without source wavelet deconvolution. Figure 2 shows the in-
put data and their corresponding predicted internal multiples.
They are plotted using the same scale. In the input data, the
first two strongest events are the primaries, and the other events
are internal multiples. Figures 2(b) and 2(c) show the predicted
internal multiples using the ISS IMA algorithm with and with-
out source wavelet deconvolution. From Figures 2(b) and 2(c),
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Figure 1: One-dimensional acoustic constant-density medium.

we can see that both algorithms predict the correct traveltimes,
but they predict different amplitudes and shapes for the inter-
nal multiples. In Figure 2(b), the amplitude of the predicted in-
ternal multiple is comparable with the internal multiple in the
input data, while the amplitude is totally different from that of
the internal multiple in the input data in Figure 2(c).
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Figure 2: (a) The input data; (b) and (c) The internal multiples
predicted by the ISS IMA algorithm with and without source
wavelet deconvolution, respectively.

To see the details, we pick the middle trace (offset = 0) and
the far trace (offset = 1700m) from each image in Figure 2.
The time windows are chosen at 0.85s ∼ 1.10s for the mid-
dle trace and at 1.05s ∼ 1.25s for the far trace, as shown in
Figure 3. For the middle trace, it can be seen that the shape
of the internal multiple predicted by the ISS IMA algorithm
without source wavelet deconvolution (Figure 3(c)) is totally
different from that of the true internal multiple (Figure 3(a)).
The predicted and true amplitudes are not comparable, either.
This is because the predicted internal multiples convolve three
wavelets. However, comparing Figure 3(b) with Figure 3(a),
we can see that the amplitude and shape of the internal multiple
predicted by the ISS IMA algorithm with source wavelet de-
convolution are similar to those of the true internal multiple, as
shown in Figure 4(a). It demonstrates that by accommodating
the source wavelet deconvolution, the amplitude and shape of
the predicted internal multiple are significantly improved for
the internal multiple prediction. For the far-offset traces, we
obtain the similar results, as shown in Figures 3(e) and 4(b).

From the numerical test, we conclude that by incorporating
the source wavelet deconvolution, the ISS IMA algorithm pro-
duces more accurate and encouraging results for both zero off-
set and far offset. The predicted internal multiple has the cor-
rect traveltime, and the amplitude and shape are significantly
improved. In addition, Liang et al. (2013) also discussed the
source wavelet effect on the internal multiple prediction for the
1D normal incident model.
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Figure 3: (a), (b), (c) The middle traces, and (d), (e), (f) the far
traces, picked from the input data and the internal multiples
predicted by the ISS IMA algorithm with and without source
wavelet deconvolution.
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Figure 4: The comparison between the internal multiple (red)
in the input data and the internal multiple (blue) predicted by
the ISS IMA algorithm with source wavelet deconvolution at
(a) zero offset and at (b) far offset (1700m).

The radiation pattern effect on internal multiple prediction

For the data generated by a general source with a radiation pat-
tern (e.g., source array), we will predict the internal multiple
using the ISS IMA algorithm with and without incorporating
the source wavelet and radiation pattern. Here, the synthetic
data are generated by a source array using the same model as
Figure 1. The source array contains five point sources in one
line with 20m range. Here, we assume that the source array
only varies laterally with identical source signatures, but the
assumption is not necessary in the ISS IMA algorithm.
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Figure 5(a) shows the input data generated by the source array.
Similar with the data generated by the point source, the first
two strongest events are the primaries, and the other events are
internal multiples. Figures 5(b) and 5(c) present the internal
multiples predicted by using the ISS IMA algorithm with and
without incorporating the source wavelet and radiation pattern.
From Figures 5(b) and 5(c), we can see that both algorithms
can predict the correct traveltime and an acceptable amplitude
of the internal multiple.
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Figure 5: (a) The input data; (b) and (c) the internal multiples
predicted by the ISS IMA algorithm with and without incor-
porating the source wavelet and radiation pattern.

To compare the internal multiple predictions in detail, the mid-
dle trace (offset = 0) and the far trace (offset = 1700m) are
picked from each image in Figure 5. We choose the time win-
dows at 0.85s∼ 1.10s for the middle trace and at 1.05s∼ 1.25s
for the far trace, as shown in Figure 6. Comparing the mid-
dle and far traces, we can see that the amplitude and shape
of the internal multiple predicted by the ISS IMA algorithm
with and without incorporating the radiation pattern are very
similar to those for the true internal multiple in the input data.
Their comparisons are plotted in Figure 7. At zero offset, there
are no visible differences, as shown in Figure 7(a), while at far
offset, Figure 7(b) demonstrates that the amplitude of the inter-
nal multiple prediction is further improved by accommodating
the radiation pattern. Therefore, for the general source data,
the modified ISS IMA algorithm that incorporates the source
wavelet and radiation pattern can enhance the accuracy and ef-
fectiveness of the amplitude prediction of the internal multiple.

CONCLUSIONS

The ISS IMA algorithm is modified and extended by accom-
modating the source wavelet and radiation pattern, which can
be provided by the prerequisite. The ISS IMA modified algo-
rithm enhances the fidelity of amplitude and phase predictions
of the internal multiple. It retains all the merits of the origi-
nal algorithm that is fully data-driven and does not require any
subsurface information. In synthetic data tests, for data gen-
erated by a point source with a wavelet, the predictions of the
amplitudes and shapes of internal multiples are significantly
improved by incorporating the source wavelet deconvolution.
For data generated by a general source with a radiation pattern,
the prediction is further improved by incorporating the source
wavelet and radiation pattern into the ISS IMA algorithm. We
expect this extended ISS IMA algorithm to be relevant and
useful for on-shore application, as well.
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Figure 6: (a), (b), (c) The middle traces, and (d), (e), (f) the far
traces, picked from the input data and the internal multiples
predicted by the ISS IMA algorithm with and without incor-
porating the source wavelet and radiation pattern.
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Figure 7: The comparison between the true internal multiple
(red) in the input data and the internal multiple predicted by
the ISS IMA algorithm with (green dash) and without (blue)
incorporating the source wavelet and radiation pattern at (a)
zero offset and at (b) far offset (1700m).
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Including higher-order Inverse Scattering Series terms to address a serious shortcoming/problem of
the internal-multiple attenuator: exemplifying the problem and its resolution
Chao Ma ∗ and Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

The Inverse Scattering Series (ISS)
internal-multiple-attenuation algorithm is often called
upon due to its unique and unmatched ability to attenuate
internal multiples. It can predict internal multiples (accurately
in time and approximately in amplitude) that are generated
by any reflectors below the free surface without needing
sub-surface information. While this algorithm is the
most capable algorithm currently available for attenuating
internal multiples, there are an increasing number of
offshore and onshore circumstances where the problem
of removing internal multiples is beyond the current ISS
internal-multiples-attenuation algorithm’s ability to address.
For example, an open issue and specific problem is removing
internal multiples which are proximal to or interfering with
the primaries (Weglein et al., 2011). This invites us to pursue
solutions that can address this type of challenge. Recent
work by Herrera and Weglein (2013) and Zou and Weglein
(2013) extend the current ISS internal-multiple-attenuation
algorithm to the ISS first-order internal-multiple-elimination
algorithm. Ma et al. (2011) and Liang et al. (2013) show the
spurious predictions (events that do not exist in the data) that
the current ISS internal-multiple-attenuation algorithm can
produce when the input data are generated by three or more
reflectors, and internal multiples in the input data are treated
as subevents. That spurious event issue is only a problem
for the ISS leading-order term (the term used to derive
the current ISS internal-multiple-attenuation algorithm),
specific higher-order terms from ISS will remove those
spurious events. We develop the new higher-order ISS
internal-multiple-attenuation algorithm and show examples
of how it can effectively address that limitation (spurious
predictions) of the current ISS internal-multiple-attenuation
algorithm while at the same time retaining the current
algorithm’s recognized strengths.

INTRODUCTION

The Inverse Scattering Series is a comprehensive seismic
data-processing tool from which distinct task-specific
subseries can be isolated to perform specific tasks (Weglein
et al., 2003). For example, the current ISS leading-order
internal-multiple-attenuation algorithm was first developed
by Araujo et al. (1994) and Weglein et al. (1997) from
the ISS internal-multiple-attenuation subseries. The
strengths (always present independent of the circumstances
and complexity of the geology and the play) of the ISS
internal-multiple-attenuation algorithm are: (1) this algorithm
does not need any sub-surface information for predicting the
internal multiples, and (2) all first-order internal multiples
generated by any reflectors below the free surface are predicted

at once with accurate time and approximate amplitude. The
tests on ISS internal-multiple-attenuation algorithm have
shown promising results and unique value compared with
other multiple-suppression methods (Fu et al., 2010; Hsu
et al., 2010; Andre, 2011; Terenghi et al., 2011; Luo et al.,
2011; Weglein et al., 2011; Kelamis et al., 2013). However,
Weglein et al. (2011) point out limitations of the current ISS
internal-multiple-attenuation algorithm: (1) this algorithm is
always an attenuation algorithm, and (2) spurious predictions
can occur only if there are three or more reflectors, and
internal multiples in the input data are treated as subevents.

It should be mentioned that those two limitations will not
always matter. For example, in the cases in which there
are several strong internal-multiple generators, and primaries,
internal multiples and spurious events are isolated from each
other, the current ISS internal-multiple-attenuation algorithm,
combined with the energy-minimization adaptive subtraction
methods, will remove internal multiples and spurious events
completely.

However, there are times when those two limitations
do matter. For example, in some offshore (e.g., North
Sea) and most on-shore (e.g., Middle East) plays with
many internal multiple generators, internal multiples
will be proximal to or interfere with primaries, the
current ISS internal-multiple-attenuation algorithm plus
energy-minimization adaptive subtraction methods will not
remove internal multiples and spurious predictions. In these
circumstances, a complete internal-multiple-elimination
algorithm without spurious predictions is called upon.

In this paper, we will focus on addressing the second limitation
(i.e., spurious predictions) and exemplifying that including the
higher-order terms for addressing the spurious prediction will
provide added values and better prediction results.

AN OVERVIEW OF THE ISS LEADING-ORDER
INTERNAL MULTIPLE ATTENUATION ALGORITHM

We refer the current ISS internal-multiple-attenuation
algorithm as ISS leading-order internal-multiple-attenuation
algorithm (leading-order means this algorithm predicts
internal multiples with the exact time but approximate
amplitude). This algorithm starts with the input data,
D(kg,ks,ω), in 2D, which are the Fourier transform of the
deghosted prestack data, and with the wavelet deconvolved
and direct wave and free-surface multiples removed. The
second term is the prediction of the first-order internal
multiples. In a 2D earth, this prediction is (Weglein et al.,
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2003)

b3(kg,ks,qs +qs) =
1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2e−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞

−∞
dz1b1(kg,k1,z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1,k2,z2)e−i(q1+q2)z2

×
∫ ∞

z2+ε
dz3b1(k2,ks,z3)ei(q2+qs)z3 , (1)

where ks and kg are the horizontal wavenumbers for the
source and receiver coordinates, respectively; qg and qs
are the vertical source and receiver wavenumbers defined

by qi = sgn(ω)

√
ω2

c2
0
− k2

i for i ∈ {g,s} (ω is the temporal

freqency); zs and zg are source and receiver depths; and z j
(i ∈ {1,2,3}) represents pseudo-depth by using a reference
velocity migration. The quantity b1(kg,ks,z) corresponds to
an uncollapsed migration (Weglein et al., 1997) of effective
plane-wave incident data.

The data with their first-order internal multiple attenuated are

D(kg,ks,ω)+D3(kg,ks,ω), (2)

where b3(kg,ks,ω) =−2iqsD3(kg,ks,ω).

For a 1-D earth and a normal incident plane wave, equation 1
reduces to

b3(k) =
∫ ∞

−∞
dz1eikz1 b1(z1)

∫ z1−ε

−∞
dz2e−ikz2 b1(z2)

×
∫ ∞

z2+ε
dz3eikz3 b1(z3). (3)

The deghosted data, D(t), for an incident plane wave, satisfy
D(ω) = b1(

2ω
c0
), D(ω) is the temporal Fourier transform of

D(t), b1(z) =
∫ ∞
−∞ eikzb1(k)dk, and k = 2ω

c0
is the vertical

wavenumber.

Equation 2 then reduces to

D(t)+D3(t), (4)

where D3(t) is Inverse Fourier transform of D3(ω), and
D3(ω) = b3(

2ω
c0
), where k = 2ω

c0
.

The idea behind using equation 1 or equation 3 to predict
the first-order internal multiple is to treat primaries (events
that experience only one upward reflection) in the data
as subevents, and to combine different subevents that
satisfying the “ lower(A)-higher(B)-lower(C) ” requirement in
the pseudo-depth domain (see Figure 1).

We denote the three primary-subevents combination as
“PPP ”, where P stands for primary. Equation 1 or equation
3 can predict all first-order internal multiples without needing
any subsurface information, and those predicted internal
multiples will have an accurate time and an approximate
amplitude. Its limitations (e.g., spurious predictions) and
resolutions are pointed out in in Weglein et al. (2011). In the
next section, we will briefly review the generation of those
spurious predictions and the proposed algorithms to reduce
them (Ma et al., 2011; Liang et al., 2013).

Figure 1: Combination of subevents for the first-order
internal multiple (dashed line), (SABE)time + (DBCR)time −
(DBE)time = (SABCR)time, figure adapted from Weglein et al.
(2003)

Figure 2a: In a two-reflector example, a “Primary – Primary –
Internal multiple (PPI)” combination predicts a second-order
internal multiple.

THE HIGHER-ORDER MODIFICATION OF THE
ISS INTERNAL-MULTIPLE LEADING-ORDER
ALGORITHM

The work of Araujo et al. (1994) and Weglein et al. (1997)
focuses on the analysis of the leading-order prediction of
first-order internal multiples (i.e., equation 1) by treating
primaries in the data as subevents (see Figure 1). However,
data consist of both primaries and internal multiples. Hence,
when the data are input into equation 1, the internal multiples
are inevitably also treated as subevents. When both primaries
and internal multiples are treated as subevents,

b3 = b1 ∗b1 ∗b1

= (P+ I)(P+ I)(P+ I)

= PPP+PPI +PIP+ IPP+PII + IPI + IIP+ III, (5)

where ∗ stands for the nonlinear interaction between the
data (see equation 1), and P and I stand for primaries and
internal multiples. Notice that we use the above expression
to categorize different possible subevent combinations.

When internal multiples are treated as subevents, Zhang
and Shaw (2010) use a two-reflector model to show that a
second-order internal multiple can be predicted (see Figure
2a); Ma et al. (2011) and Liang et al. (2013) use three-reflector
and four-reflector examples to show that spurious events are
generated, respectively (see Figures 2b and 2c).

It is worth noting that because of the “lower-higher-lower”
requirement of the algorithm (see Figure 1), the spurious event
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Figure 2b: In a three-reflector example, a “Primary – Internal
multiple – Primary (PIP)” combination predicts a spurious
event.

Figure 2c: In a four- reflector example, a “Primary – Primary
– Internal multiple (PPI)” combination predicts another type
of spurious event.

in Figure 2b (i.e., P3–I212–P3), can be generated only when the
arrival time of the third primary (P3) is greater than that of the
internal multiple (I212). Otherwise, this spurious event would
not be produced.

In Figure 2c, the condition for the prediction of spurious event
(i.e., P4–P3–I212) is that the arrival time of the third primary
(P3) is smaller than that of the internal multiple (I212).

In order to eliminate the prediction of spurious events, we must
remove the effects of internal multiples acting as subevents.
The higher-order terms from ISS are isolated to address the
two types of spurious events shown in 2b and 2c:

bPIP
5 (k) =

∫ ∞

−∞
dz1eikz1 b1(z1)

∫ z1−ε

−∞
dz2e−ikz2 b3(z2)

∫ ∞

z2+ε
dz3eikz3 b1(z3), (6)

and

bPPI
5 (k) = 2

∫ ∞

−∞
dz1eikz1 b3(z1)

∫ z1−ε

−∞
dz2e−ikz2 b1(z2)

∫ ∞

z2+ε
dz3eikz3 b1(z3), (7)

where b1(z) is the same as in equation 3, and
b3(z) =

∫ ∞
−∞ eikzb3(k)dk. The superscripts PIP and PPI

in equations 6 and 7 indicate that higher-order terms, bPIP
5

and bPPI
5 , are included to address the spurious prediction

generated by Primary–Internal multiple–Primary and
Primary–Primary-Internal multiple, respectively. The
factor of 2 is used in equation 7 because an internal multiple
can act as a subevent in either the innermost integral or the
outermost integral.

By including the higher-order terms in equations 6 and 7, the
proposed new algorithm in 1-D is

D(t)+D3(t)+DPIP
5 (t)+DPPI

5 (t), (8)

where D(t) and D3(t) are the same as in equation 4,
and DPIP

5 (t) and DPPI
5 (t) are Inverse Fourier transforms of

D3(ω),DPIP
5 (ω) and DPPI

5 (ω), respectively, and DPIP
5 (ω) =

bPIP
5 (k) and DPPI

5 (ω) = bPPI
5 (k) with k = 2ω

c0
.

It should be mentioned that, in the cases where there are
only three reflectors, only DPIP

5 is needed to address PIP-type
spurious events because PPI-type spurious events arise only
when there are four or more reflectors.

1-D NORMAL INCIDENT EXAMPLES WITH
INTERFERING PRIMARIES AND INTERNAL
MULTIPLES

In this section, we test both the DPIP
5 and DPPI

5 terms by using
more realistic and practical synthetic data (generated by many
reflectors with interfering primaries and internal multiples),
compare the reference internal multiples to the prediction
results with/without the inclusion of higher-order terms.

Figure 3: Velocity model used to generate synthetic data
(courtesy of Saudi Arabian Oil Co.).

The first synthetic data are generated based on velocity model
in Figure 3 by using reflectivity method with a ricker wavelet
of peak frequency at 25 Hz .

The comparison is shown in Figure 4. When input
contains only primaries, the leading-order algorithm predicts
the first-order internal multiples very well (see Figure 4a).
The prediction result shows degradation (because of the
higher-order internal multiples and spurious events in the
prediction) when the input contains both primaries and internal
multiples (see Figure 4b). With the inclusion of higher-order
terms, the prediction result improves (see Figure 4c).

In the second test, instead of comparing the prediction results
with the reference internal multiples of first-order, we will

Figure 4a: Comparison between the reference first-order
internal multiples (in blue) and leading-order prediction (in
red) with primaries as input.
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Figure 4b: Comparison between the reference first-order
internal multiples (in blue) and leading-order prediction (in
red) with primaries and internal multiples as input.

Figure 4c: Comparison between the reference first-order
internal multiples (in blue) and leading-order plus higher-order
prediction (in red) with primaries and internal multiples as
input.

Figure 5: Velocity and density blocking from well-log data
(courtesy of Kuwait Oil Company).

compare the prediction results with the reference internal
multiples of all orders. The model (data courtesy of Kuwait
Oil Company) is shown in Figure 5 with both velocity and
density varying. We use reflectivity methods with a ricker
wavelet of peak freqency at 25 Hz to generate the test data
corresponding the model in Figure 5.

The comparison among the reference internal multiples (blue
in Figure 6), leading-order prediction (red in Figure 6a), and
leading-order plus higher-order prediction (red in Figure 6b)
are shown in Figure 6 where arrows point to the significant
improvements. Notice that the inputs for both predictions
contain primaries and internal multiples. The results show that
inclusion of higher-order terms improves the prediction results
in the cases in which events are interfering with each other.

Figure 6a: Comparison between the reference internal
multiples (in blue) and leading-order prediction (in red).

Figure 6b: Comparison between the reference internal
multiples (in blue) and leading-order plus higher-order
prediction (in red).

CONCLUSIONS

In this paper, we exemplified a serious shortcoming (i.e.,
spurious predictions) of the current ISS leading-order
internal-multiple-attenuation algorithm. We develop, test
and analyze the resolution with a new higher-order ISS
algorithm that anticipates and removes the spurious events.
This higher-order ISS internal-multiple-attenuation algorithm
retains the strengths of the current leading-order ISS
internal-multiple-attenuation algorithm and addresses one of
its limitations.

The synthetic tests on the realistic well-log based data sets in
this paper show the significance and value of including the
higher-order ISS terms to address the spurious predictions.
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Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H.
Matson, R. T. Coates, D. Corrigan, D. J. Foster, S. A. Shaw,
and H. Zhang, 2003, Inverse scattering series and seismic
exploration: Inverse Problems, R27–R83.

Weglein, A. B., F. A. Gasparotto, P. M. Carvalho, and
R. H. Stolt, 1997, An inverse-scattering series method
for attenuating multiples in seismic reflection data:
Geophysics, 62, 1975–1989.

Zhang, H., and S. Shaw, 2010, 1-d analytical analysis of higher
order internal multiples predicted via the inverse scattering
series based algorithm: SEG Expanded Abstracts, 29,
3493–3498.

Zou, Y., and A. Weglein, 2013, A new method to eliminate first
order internal multiples for a normal incidence plane wave
on a 1d earth: SEG Technical Program Expanded Abstracts,
4136–4140.



The internal-multiple elimination algorithm for all reflectors for 1D earth
Part I: strengths and limitations
Yanglei Zou, Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

The ISS(Inverse-Scattering-Series) internal-multiple attenua-
tion algorithm(Araújo et al. (1994) and Weglein et al. (1997))
can predict the correct time and approximate amplitude for all
first-order internal multiples without any information of the
earth. This algorithm is effective and can attenuate internal
multiples in many cases. However, in certain places, both off-
shore and onshore, the multiple is often proximal to or interfer-
ing with the primaries. Therefore, the task of removing inter-
nal multiples without damaging primaries becomes more chal-
lenging and subtle and currently beyond the collective capabil-
ity of the petroleum industry. Weglein et al. (2003) proposed
a three-pronged strategy for providing an effective response to
this pressing and prioritized challenge. One part of the strat-
egy is to develop an internal-multiple elimination algorithm
that can predict both the correct amplitude and correct time for
all internal multiples. The ISS internal-multiple elimination
algorithm for all first-order internal multiples generated from
all reflectors in a 1D earth is proposed in part I of this paper.
The primaries in the reflection data that enters the algorithm
provides that elimination capability, automatically without our
requiring the primaries to be identified or in any way sepa-
rated. The other events in the reflection data, that is, the inter-
nal multiples, will not be helpful in this elimination scheme.
That is a limitation of this new algorithm. In part II of this
two part paper, we show how the ISS anticipates that short-
coming. Higher order ISS terms when combined with this new
algorithm will provide elimination ability without the current
shortcoming. The basic algorithm is developed,evaluated and
tested in part I. The next version with higher order ISS terms
that rewrites the elimination algorithm without a downside is
presented and tested in part II. Moreover, this elimination algo-
rithm based on the ISS internal-multiple attenuation algorithm
is derived by using reverse engineering to provide the differ-
ence between eliminate and attenuate for a 1D earth. This par-
ticular elimination algorithm is model type dependent since the
reverse engineering method is model type dependent. The ISS
internal-multiple attenuation algorithm is model type indepen-
dent and in future work we will pursue the development of an
eliminator for a multi-dimensional earth by identifying terms
in the inverse scattering series that have that purpose.

INTRODUCTION

The inverse-scattering-series allows all seismic processing ob-
jectives, such as free-surface-multiple removal and internal-
multiple removal to be achieved directly in terms of data, with-
out any estimation of the earth’s properties. For internal-multiple
removal, the ISS internal-multiple attenuation algorithm can
predict the correct time and approximate and well-understood
amplitude for all first-order internal multiples generated from

all reflectors without any subsurface information. If the events
in data are isolated, the energy minimization adaptive subtrac-
tion can fix the gap between attenuation algorithm and elimi-
nation algorithm plus all factors that are outside the assumed
physics of the subsurface and acquisition, et al. However, in
certain places, events often interfere with each other in both
on-shore and off-shore seismic data. In these cases, the criteria
of energy minimization adaptive subtraction may fail and com-
pletely removing internal multiples becomes more challenging
and beyond the current capability of the petroleum industry.

For dealing with this challenging problem, Weglein et al. (2003)
proposed a three-pronged strategy including (1)Develop the
ISS prerequisites for predicting the reference wave field and to
produce de-ghosted data Mayhan and Weglein (2014). (2)De-
velop internal-multiple elimination algorithms from ISS. (3)De-
velop a replacement for the energy-minimization criteria for
adaptive subtraction. For the second part of the strategy, that
is, to upgrade the ISS internal-multiple attenuator to elimina-
tor, the strengths and limitations of the ISS internal-multiple
attenuator are noted and reviewed. The ISS internal-multiple
attenuator always attenuates all first-order internal multiples
from all reflectors at once, automatically and without subsur-
face information. That is a tremendous strength, and is a con-
stant and holds independent of the circumstances and complex-
ity of the geology and the play. The primaries in the reflection
data that enters the algorithm provides that delivery, automat-
ically without our requiring the primaries to be identified or
in any way separated. The other events in the reflection data,
that is, the internal multiples, when they enter the ISS internal-
multiple algorithm will alter the higher order internal multi-
ples and thereby assist and cooperate with higher order ISS
internal-multiple attenuation terms, to attenuate higher order
internal multiples. However, there is a downside, a limitation.
There are cases when internal multiples that enter the atten-
uator can predict spurious events. That is a well-understood
shortcoming of the leading order term, when taken in isola-
tion, but is not an issue for the entire ISS internal-multiple
capability. It is anticipated by the ISS and higher order ISS
internal multiple terms exist to precisely remove that issue of
spurious event prediction, and taken together with the first or-
der term, no longer experiences spurious event prediction. Ma
et al. (2012) and Ma and Weglein (2014) provided those higher
order terms and for spurious events removal. In a similar way,
there are higher order ISS internal multiple terms that provide
the elimination of internal multiples when taken together with
the leading order attenuator term. There are early discussions
in Ramı́rez (2007). And Wilberth Herrera and Weglein (2012)
has derived an algorithm that can eliminate all first-order inter-
nal multiples generated at the shallowest reflector for 1D nor-
mal incidence. Part I of this paper proposes a general elimina-
tion algorithm for all first-order internal-multiples generated
from all reflectors in a 1D earth. Similarly as the attenuator,
The primaries in the reflection data that enters the algorithm
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provides that elimination capability, automatically without our
requiring the primaries to be identified or in any way separated.
The other events in the reflection data, that is, the internal mul-
tiples, will not be helpful in this elimination scheme. That is a
limitation of current algorithm. In part II of this two part paper,
we show how the ISS anticipate that shortcoming. Higher or-
der ISS terms when combined with the current algorithm will
provide elimination ability without the current shortcoming.
The basic algorithm is developed and explained in part I. The
newer version with higher order ISS terms that rewrites elim-
ination algorithm without a downside is presented and tested
in part II. Moreover, this elimination algorithm based on the
ISS internal-multiple attenuation algorithm is derived by using
reverse engineering method. It is model type dependent since
the reverse engineering method is model type dependent. The
ISS internal-multiple attenuation algorithm is model type in-
dependent.

ISS INTERNAL-MULTIPLE ATTENUATION ALGORITHM
AND ATTENUATION FACTOR FOR 1D NORMAL IN-
CIDENCE

First, we can have a review of the ISS internal-multiple at-
tenuation algorithm before we introduce the internal-multiple
elimination algorithm. The ISS internal-multiple attenuation
algorithm is first given by Araújo et al. (1994) Weglein et al.
(1997). The 1D normal incidence version of the algorithm is
presented as follows:

bIM
3 (k)=

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′b1(z′)

∫ ∞

z′+ε1

dz′′eikz′′b1(z′′).

(1)
Where b1(z) which is closely related to the data is the water
speed migration of the data due to a 1D normal incidence spike
plane wave. ε1 and ε2 are two small positive number intro-
duced to avoid self interaction. bIM

3 (k) is the predicted internal
multiples in the vertical wavenumber domain. This equation
can predict the correct time and approximate amplitude of all
first-order internal multiples.

Figure 1: an example of the Attenuation Factor of a first-order
internal multiple generated at the shallowest reflector, notice
that all red terms are extra transmission coefficients

The procedure of predicting a first-order internal multiple gen-
erated at the shallowest reflector is shown in figure 1. The ISS
internal-multiple attenuation algorithm uses three primaries in
the data to predict a first-order internal multiple(Note that this
algorithm is model type independent and it takes account all
possible combinations of primaries that can predict internal
multiples. These figures are just to show intuitively how it
works). From the figure we can see, every sub event on the
left hand side experiences several phenomena making its way

Figure 2: an example of the Attenuation Factor of a first-order
internal multiple generated at the next shallowest reflector, no-
tice that all red terms are extra transmission coefficients

down to the earth then back to the receiver. When compared
with the internal multiple on the right hand side, the events
on the left hand side have extra transmission coefficients as
shown in red. Multiplying all those extra transmission coeffi-
cients, we get the attenuation factor T01T10 for this first-order
internal multiple generated at the shallowest reflector. And all
first-order internal multiples generated at the shallowest reflec-
tor have the same attenuation factor.

Figure 2 shows the procedure of predicting a first-order inter-
nal multiple generated at the next shallowest reflector. In this
example, the attenuation factor is (T01T10)

2(T12T21).

The attenuation factor, AFj, in the prediction of internal multi-
ples is given by the following:

AFj =





T0,1T1,0 ( f or j = 1)∏ j−1

i=1
(T 2

i−1,iT
2

i,i−1)Tj, j−1Tj−1, j ( f or 1< j < J)

(2)

The attenuation factor AFj can also be performed by using re-
flection coefficients:

AFj =

{
1−R2

1 ( f or j = 1)
(1−R2

1)
2(1−R2

2)
2 · · ·(1−R2

j−1)
2(1−R2

j) ( f or 1< j < J)
(3)

The subscript j represents the generating reflector, and J is the
total number of interfaces in the model. The interfaces are
numbered starting with the shallowest location. The attenu-
ation factor is directly related to the trajectory of the events,
which forms the prediction of the internal multiple.

ISS INTERNAL-MULTIPLE ELIMINATION ALGORITHM
FOR 1D NORMAL INCIDENCE

The discussion above demonstrates that all first-order internal
multiples generated at the same reflector have the same atten-
uation factor. We can see the attenuation factor contains all
transmission coefficients from the shallowest reflector down
to the reflector generating the multiple. And from the exam-
ples(shown in figure 1 and 2) we can see the middle event con-
tains all the information about those transmission coefficients
.Therefore, our idea is to modify the middle term in the attenu-
ation algorithm to remove the attenuation factor and make the
attenuation algorithm an eliminator. That is from
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bIM
3 (k)=

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′b1(z′)

∫ ∞

z′+ε1

dz′′eikz′′b1(z′′)

(4)
to

bIM
E (k)=

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′F [b1(z′)]

∫ ∞

z′+ε1

dz′′eikz′′b1(z′′)

(5)

By introducing a new function called g(z) in which the ampli-
tude of each event corresponds to a reflection coefficient, we
find a way to construct F [b1(z)] by using b1(z) and g(z). After
that, we find an integral equation about b1(z) and g(z). The
F [b1(z)] is discovered Zou and Weglein (2013):

F [b1(z)] =
b1(z)

[1− (
∫ z+ε

z−ε dz′g(z′))2][1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′g(z′′)]2

(6)

g(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′g(z′′)

(7)

To derive the F [b1(z)] from b1(z), g(z) must first be solved
in equation (7). Thereafter, g(z) is integrated into equation
(6). Now we will show one way to solve these equations. By
iterating g(z) in (7), we can get more accurate approximation.
Substitute more accurate approximations of g(z) into F [b1(z)],
we will achieve or obtain higher orders of approximation of
the elimination algorithm which can predict correct amplitude
of first-order internal multiples generated at deeper reflectors.

ISS INTERNAL-MULTIPLE ELIMINATION ALGORITHM
FOR 1D PRESTACK

Now we get the algorithm in 1D normal incidence and it lights
the way to find an algorithm in 1D pre-stack. Let us discussed
an example in a 2D world with 1D earth. In this example, the
reflection coefficients and transmission coefficients are both
angle dependent. With discussions about this example Zou
and Weglein (2014), we find that the attenuation factors consist
of angle dependent transmission coefficients. Following early
discussions and work in Ramı́rez (2007) and Wilberth Herrera
and Weglein (2012), we discovered the elimination algorithm
in 1D pre-stack.

Below shows the 1D pre-stack internal-multiple elimination
algorithm for acoustic medium (Note that the ISS internal-
multiple attenuation algorithm is model type independent). Due
to the angle dependent reflection coefficients, we can no longer
just integrate the data in k-z domain to get the reflection coef-
ficients as we did in 1D normal incidence, we need to go to k-q
domain where each (k, q) corresponds to one reflection coeffi-
cient. The differences between the 1D pre-stack and 1D nor-
mal incidence algorithms are (1) the 1D pre-stack algorithm
has one more variable k, and (2) use the reflection coefficients
in the k-q domain instead of direct integral in k-z domain.

bIM
E (k,2q) =

∫ ∞

−∞
dze2iqzb1(k,z)

∫ z−ε1

−∞
dz′e−2iqz′F [b1(k,z′)]

×
∫ ∞

z′+ε2

dz′′e2iqz′′b1(k,z′′)

F [b1(k,z)] =
1

2π

∫ ∞

−∞

∫ ∞

−∞
dz′dq′

× e−iq′zeiq′z′b1(k,z′)

[1−
∫ z′−ε
−∞ dz′′b1(k,z′′)eiq′z′′

∫ z′′+ε
z′′−ε dz′′′g∗(k,z′′′)e−iq′z′′′ ]2

× 1

1−|
∫ z′+ε

z′−ε dz′′g(k,z′′)eiq′z′′ |2

g(k,z) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
dz′dq′

× e−iq′zeiq′z′b1(k,z′)

1−
∫ z′−ε
−∞ dz′′b1(k,z′′)eiq′z′′

∫ z′′+ε
z′′−ε dz′′′g∗(k,z′′′)e−iq′z′′′

NUMERICAL TESTS FOR 1D PRESTACK ISS INTERNAL-
MULTIPLE ELIMINATION ALGORITHM

We test the 1D pre-stack acoustic internal multiple elimination
algorithm for a two-reflector model. Each layer has density
1.0g/cm3, 1.2g/cm3, 2.0g/cm3 and velocity 1500m/s 3000m/s
and 4500m/s respectively. Figure 3 shows the data and figure 4
and 5 show the attenuation and elimination algorithm predic-
tions respectively. Figure 6 to Figure 13 show different traces
in different offsets (the elimination algorithm prediction (red)
and attenuation algorithm prediction (green) compared to data
(blue)). We can see the elimination algorithm keeps the correct
time and can predict better amplitude.

Figure 3: data

Figure 4: internal multiple attenuation prediction
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Figure 5: internal multiple elimination prediction

Figure 6: the elimination algorithm prediction (red) and atten-
uation algorithm prediction (green) compared to data (blue) at
offset = 0m

Figure 7: the elimination algorithm prediction (red) and atten-
uation algorithm prediction (green) compared to data (blue) at
offset = 0m. After removing the tails of primaries.

Figure 8: the elimination algorithm prediction (red) and atten-
uation algorithm prediction (green) compared to data (blue) at
offset = 200m

Figure 9: the elimination algorithm prediction (red) and atten-
uation algorithm prediction (green) compared to data (blue) at
offset = 200m. After removing the tails of primaries.

Figure 10: the elimination algorithm prediction (red) and at-
tenuation algorithm prediction (green) compared to data (blue)
at offset = 400m

CONCLUSION

The pre-stack 1D ISS internal multiple elimination algorithm
for all first-order internal multiples from all reflectors is pro-

Figure 11: the elimination algorithm prediction (red) and at-
tenuation algorithm prediction (green) compared to data (blue)
at offset = 400m. After removing the tails of primaries.

Figure 12: the elimination algorithm prediction (red) and at-
tenuation algorithm prediction (green) compared to data (blue)
at offset = 600m

Figure 13: the elimination algorithm prediction (red) and at-
tenuation algorithm prediction (green) compared to data (blue)
at offset = 600m. After removing the tails of primaries.

posed in part I of this paper. Numerical tests are carried out to
evaluate this new algorithm and to determine the strengths and
limitations. The results shows the elimination algorithm can
predict better amplitude of the internal multiples. In discussing
the elimination algorithm, the primaries in the reflection data
that enters the algorithm provides that elimination capability,
automatically without our requiring the primaries to be iden-
tified or in any way separated. The other events in the reflec-
tion data, that is, the internal multiples, will not be helpful in
this elimination scheme. That is a limitation of this new algo-
rithm. In part II of this two part paper, we show how the ISS
anticipates that shortcoming. Higher order ISS terms when
combined with the current algorithm will provide elimination
ability without the current shortcoming. The basic algorithm
is developed and explained in part I. The newer version with
higher order ISS terms that rewrites the elimination algorithm
without a downside is presented and tested in part II.This algo-
rithm is a part of the three-pronged strategy which is especially
relevant and provide value when primaries and internal multi-
ples are proximal to and/or interfere with each other in both
on-shore and off-shore data.
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The internal-multiple elimination algorithm for all reflectors for 1D earth
Part II: addressing the limitations
Yanglei Zou, Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

Driven by the demand for more capabilities in remov-
ing the internal multiples, the strengths and limitations of
the ISS(Inverse-Scattering-Series) internal-multiple attenua-
tion algorithm(Araújo et al. (1994) and Weglein et al. (1997))
are noted and reviewed. The ISS internal multiple attenuation
algorithm has tremendous strength that it can predict the cor-
rect time and approximate amplitude for all first-order internal
multiples without any information of the earth. As the first
term in the internal-multiple elimination sub-series, the ISS
internal-multiple attenuation algorithm has its own limitations,
as noted in Weglein et al. (2003): in certain circumstances, it
may generate spurious events Ma et al. (2012) and can not pre-
dict exact correct amplitude.That is a well-understood short-
coming of the leading order term, when taken in isolation, but
is not an issue for the entire ISS internal multiple capability.
In part I of this paper, a new elimination algorithm for all first-
order internal multiples for one dimensional earth has been de-
rived based on the ISS internal-multiple attenuation algorithm.
This elimination algorithm based on the ISS internal-multiple
attenuation algorithm is derived by using reverse engineering
method. This elimination algorithm is model type dependent
since the reverse engineering method is model type dependent
while the ISS internal-multiple attenuation algorithm is model
type independent. The primaries in the reflection data that en-
ters this elimination algorithm provides that elimination capa-
bility, without requiring the primaries to be identified or in any
way separated. The other events in the reflection data may al-
ter the amplitude and need assist and cooperate with other ISS
terms to completely eliminate the internal multiples. In part II
of this paper, a modified strategy is proposed to address this
limitation of the new elimination algorithm.

INTRODUCTION

The ISS internal-multiple attenuation algorithm(Araújo et al.
(1994) and Weglein et al. (1997)) can predict the correct time
and approximate amplitude for all first-order internal multiples
without any information of the earth. This algorithm is effec-
tive and can attenuate internal multiples in many cases. How-
ever, in certain places, both offshore and onshore, the multiple
is often proximal to or interfering with the primaries. There-
fore, the task of removing internal multiples without damag-
ing primaries becomes more challenging and subtle and cur-
rently beyond the collective capability of the petroleum indus-
try. Weglein et al. (2003) proposed a three-pronged strategy for
providing an effective response to this pressing and prioritized
challenge. One part of the strategy is to develop an internal-
multiple elimination algorithm that can predict both the cor-
rect amplitude and correct time for all internal multiples. Part
I of this paper proposes a general elimination algorithm for all

first-order internal-multiples generated from all reflectors in a
1D earth. The primaries in the reflection data that enters the
algorithm provides that elimination capability, automatically
without our requiring the primaries to be identified or in any
way separated. The other events in the reflection data, that is,
the internal multiples, will not be helpful in this elimination
scheme. That is a limitation of current algorithm. In part II
of this two part paper, we show how the ISS anticipate that
shortcoming. Higher order ISS terms when combined with the
current algorithm will provide elimination ability without the
current shortcoming. The basic algorithm is developed and
explained in part I. The newer version with higher order ISS
terms that rewrites elimination algorithm without a downside
is presented and tested in part II. In this part II, we will first
give a review of both the internal multiple attenuator and elim-
inator, then we will propose a modified strategy with higher
order terms from the inverse scattering series for addressing
the limitations of the eliminator and test the strategy in a lay-
ered medium.

ISS INTERNAL-MULTIPLE ATTENUATION ALGORITHM
AND ATTENUATION FACTOR FOR 1D NORMAL IN-
CIDENCE

The ISS internal-multiple attenuation algorithm is first given
by Araújo et al. (1994) and Weglein et al. (1997). The 1D nor-
mal incidence version of the algorithm is presented as follows:

bIM
3 (k)=

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′b1(z′)

∫ ∞

z′+ε1

dz′′eikz′′b1(z′′).

(1)
Where b1(z) which is closely related to the data is the wa-
ter speed migration of the data due to a 1D normal incidence
spike plane wave. ε1 and ε2 are two small positive number
introduced to avoid self interaction. bIM

3 (k) is the predicted
internal multiples in vertical wavenumber domain. This equa-
tion can predict the correct time and approximate amplitude of
all first-order internal multiples.

Figure 1: an example of the Attenuation Factor of a first-order
internal multiple generated at the shallowest reflector, notice
that all red terms are extra transmission coefficients

The procedure of predicting a first-order internal multiple gen-
erated at the shallowest reflector is shown in figure 1. The ISS
internal-multiple attenuation algorithm uses three primaries in
data to predict a first-order internal multiple. Multiplying all
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Figure 2: an example of the Attenuation Factor of a first-order
internal multiple generated at the next shallowest reflector, no-
tice that all red terms are extra transmission coefficients

those extra transmission coefficients, we get the attenuation
factor T01T10 for this first-order internal multiple generated
at the shallowest reflector. Figure 2 shows the procedure of
predicting a first-order internal multiple generated at the next
shallowest reflector. In this example, the attenuation factor is
(T01T10)

2(T12T21). The attenuation factor, AFj, in the predic-
tion of internal multiples is given by the following:

AFj =





T0,1T1,0 ( f or j = 1)∏ j−1

i=1
(T 2

i−1,iT
2

i,i−1)Tj, j−1Tj−1, j ( f or 1< j < J)

(2)
The attenuation factor AFj can also be performed by using re-
flection coefficients:

AFj =

{
1−R2

1 ( f or j = 1)
(1−R2

1)
2(1−R2

2)
2 · · ·(1−R2

j) ( f or 1< j < J)
(3)

The subscript j represents the generating reflector, and J is the
total number of interfaces in the model.

ISS INTERNAL-MULTIPLE ELIMINATION ALGORITHM
FOR 1D NORMAL INCIDENCE

The discussion above demonstrates that all first-order internal
multiples generated at the same reflector have the same atten-
uation factor. We can see the attenuation factor contains all
transmission coefficients from the shallowest reflector down to
the reflector generating the multiple. Zou and Weglein (2013)
proposed an elimination algorithm that can remove all the at-
tenuation factors for all first-order internal multiples from all
reflectors. The algorithm is shown as following:

F [b1(z)] =
b1(z)

[1− (
∫ z+ε

z−ε dz′g(z′))2][1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′g(z′′)]2

(4)

g(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′g(z′′)

(5)

g(z) is a intermediate function to help construct the above close
formula. To derive the F [b1(z)] from b1(z), g(z) must first be
solved in equation (5). Thereafter, g(z) is integrated into equa-
tion (4). By iterating g(z) in (5), we can get more accurate ap-
proximation. Substitute more accurate approximations of g(z)
into F [b1(z)], we will get higher orders of approximation of
the elimination algorithm which can predict correct amplitude
of first-order internal multiples generated at deeper reflectors.

First Type of Equation Approximation for g(z)
The simplest approximation for g(z) is presented as follows:

g(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′g(z′′)

≈b1(z)
1−0
≈b1(z) (6)

Second Type of Equation Approximation for g(z)
A more accurate approximation for g(z) is presented as fol-
lows::

g(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′g(z′′)

≈ b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′b1(z′′)

(7)

Higher order approximations
By iterating g(z) in (5), we can get more accurate approxima-
tion, as shown in figure 3. Substitute more accurate approxi-
mations of g(z) into F [b1(z)], we will get better approximation
of the elimination algorithm which can predict correct ampli-
tude of first-order internal multiples generated at deeper reflec-
tors.

Figure 3: different approximations for g(z)

ISS INTERNAL-MULTIPLE ELIMINATION ALGORITHM
FOR 1D PRESTACK

In part I of this paper, a new algorithm dealing with the am-
plitude issue for all first-order internal multiples for one di-
mensional earth has been derived based on the ISS internal-
multiple attenuation algorithm. The algorithm is shown as fol-
lows:

bIM
E (k,2q) =

∫ ∞

−∞
dze2iqzb1(k,z)

∫ z−ε1

−∞
dz′e−2iqz′F [b1(k,z′)]

×
∫ ∞

z′+ε2

dz′′e2iqz′′b1(k,z′′)
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F [b1(k,z)] =
1

2π

∫ ∞

−∞

∫ ∞

−∞
dz′dq′

× e−iq′zeiq′z′b1(k,z′)

[1−
∫ z′−ε
−∞ dz′′b1(k,z′′)eiq′z′′

∫ z′′+ε
z′′−ε dz′′′g∗(k,z′′′)e−iq′z′′′ ]2

× 1

1−|
∫ z′+ε

z′−ε dz′′g(k,z′′)eiq′z′′ |2

g(k,z) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
dz′dq′

× e−iq′zeiq′z′b1(k,z′)

1−
∫ z′−ε
−∞ dz′′b1(k,z′′)eiq′z′′

∫ z′′+ε
z′′−ε dz′′′g∗(k,z′′′)e−iq′z′′′

A MODIFIED STRATEGY OF USING B1 +B3 INSTEAD
OF B1 AS THE INPUT DATA FOR THE ELIMINATION
ALGORITHM

The primaries in the reflection data that enters the elimination
algorithm (both 1D normal incidence and 1D pre-stack) pro-
vides that elimination capability, automatically without our re-
quiring the primaries to be identified or in any way separated.
The other events in the reflection data, that is, the internal mul-
tiples, will not be helpful in this elimination scheme. That is
a limitation of current algorithm. Now, we show the modi-
fied strategy and newer version of internal-multiple elimina-
tion algorithm. The limitation is due to internal multiples in
the input data. Fortunately, we have a good approximations
of the internal multiples (b3) and if we use b1 + b3 instead of
b1 as the input data for the elimination algorithm, we will be
able to significantly reduce the errors due to the multiples in
the data. In figure 4, b1, which is very close to data, con-

Figure 4: using b1 + b3 instead of b1 as the input data for the
elimination algorithm

tains primaries, first-order internal multiples and higher-order
internal multiples. We use the attenuation algorithm to predict
first-order internal multiples(b3) with correct time and approx-
imate amplitude. Due to the multiples in the data, the attenua-
tion algorithm also generates spurious events Ma et al. (2012)
and makes prediction for higher-order multiples at the same
time. However, the elimination algorithm assumes the data
contains only primaries. Here is the strategy, since in b1 + b3
the first-order internal multiples are attenuated and it is a good
approximation for data with only primaries. If we use b1 +b3

instead of b1 for the elimination algorithm, the predicted spu-
rious events and higher-order multiples due to first-order inter-
nal multiples in the data are also attenuated. All events in the
red circle including other events are small compared with the
first-order internal multiples and can be ignored.

NUMERICAL TESTS ON A 34-REFLECTOR MODEL

In this section, we will test the modified strategy for a 34-
reflector model under 1D normal incidence. And the modified
strategy we proposed in this paper can be easily extended to the
1D pre-stack version. In figure 5, is a 34-reflector model. The
input data is shown in figure 6. In this test we used a 40th ap-
proximation of the algorithm as shown in figure 7. We test the

Figure 5: model

Figure 6: input data

ISS internal-multiple attenuation algorithm, the elimination al-
gorithm with input b1 and input b1+b3 respectively. From the
result we conclude that using b1+b3 as the input significantly
reduced errors and makes better prediction for all first-order
internal multiples generated from all reflectors.

Figure 8,9,10 show the prediction of different algorithms/strategies
compared with the input data. Figure 11,12,13 shows a small
time interval of figure 8,9,10 respectively.
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Figure 7: iteration to get g40(z)

Figure 8: Internal multiple attenuator prediction(red) com-
pared with the input data(blue)

Figure 9: internal multiple elimination algorithm (with b1
as the input data) prediction(red) compared with the input
data(blue)

Figure 10: Internal multiple elimination algorithm (with b1 +
b3 as the input data) prediction(red) compared with the input
data(blue)

CONCLUSION

In part I of this paper, a new elimination algorithm for all first-
order internal multiples for one dimensional earth has been de-

Figure 11: A small time interval of figure 8

Figure 12: A small time interval of figure 9

Figure 13: A small time interval of figure 10

rived based on the ISS internal-multiple attenuation algorithm.
The primaries in the reflection data that enters this elimination
algorithm provides that elimination capability, without requir-
ing the primaries to be identified or in any way separated. The
other events in the reflection data may alter the amplitude and
need assist and cooperate with higher order ISS terms to com-
pletely eliminate the internal multiples. In this part II of this
two part set of paper, a modified strategy is proposed to address
this limitation of the current elimination algorithm. In the end
we tested the strategy in a layered medium and the results are
very encouraging.
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The first test and evaluation of the inverse scattering series internal multiple attenuation algorithm
for an attenuating medium
Jing Wu and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

In this paper, the Inverse Scattering Series (ISS) internal multi-
ple attenuation algorithm is analytically and numerically eval-
uated on reflection data from an attenuating medium. All pre-
vious synthetic data tests on this algorithm have involved mul-
tidimensional acoustic and elastic media. The results for an
attenuating medium show that the method retains its value to
directly predict internal multiples (IM) with the exact phase
and an approximate amplitude, without knowing the medium,
and its anelastic properties.

INTRODUCTION

The inverse scattering series can achieve all processing objec-
tives directly by using distinct isolated task-specific subseries
and without subsurface information (Weglein et al. (2003)).
ISS internal multiple attenuator has shown stand-alone capa-
bilities on both marine and on-shore plays (e.g., Ferreira, 2011;
Fu et al., 2010). To extend attenuation method to elimination,
Zou and Weglein (2013) proposes a new algorithm to compen-
sate for transmission loss in the attenuator. This new elimina-
tion method requires the input data to be wavelet deconvolved
and assumes an elastic subsurface. Obviously, if the data are
attenuated and broadened because of their propagation in the
anelastic medium, Q compensation is the conventional step to
recover the amplitudes before substituting the data into ISS in-
ternal multiple elimination algorithm. That can be a difficult
step to effectively achieve in practice.

Q compensation based on ISS without Q information of the
subsurface has demonstrated an early but encouraging effec-
tiveness (e.g., Innanen and Weglein, 2003, 2005; Innanen and
Lira, 2008). ISS Q compensation without Q method supposes
that the input data contain primaries only, i.e., the internal mul-
tiple has been attenuated or eliminated for best before stepping
into Q compensation algorithm.

This paper demonstrates that applying the industry standard
ISS internal multiple attenuator to data from an anelastic earth
will attenuate the multiples. The data with primary and rela-
tively weak residual internal multiple can be substituted into
the ISS Q compensation algorithm to obtain effective elastic
data and then insert that data into the new elastic internal mul-
tiple elimination algorithm.

In this paper, for the first time the ISS internal multiple atten-
uator is tested on data from an attenuating medium. A two-
reflector model with constant Q in each layer is used for ana-
lytical and numerical testing and evaluation. The result indi-
cates that the prediction has the correct phase and an approx-
imate amplitude. That is positive news for the ISS internal
multiple attenuator and encourages developing an elimination

method for the exploration plays where absorption is signif-
icant, e.g., pre-salt plays in the deep water Gulf of Mexico,
off-shore Brazil, the Red Sea and the North Sea.

ANALYTICAL TEST OF ISS INTERNAL MULTIPLE AT-
TENUATION ALGORITHM ON DATA WITH Q

Q Definition

Based on Aki and Richards (2002), Q is used to represent the
energy lost for a wave-field propagating, in one wave length,
and is defined as

Q =
2πE
∆E

, (1)

where E is the energy of the wave-field, and ∆E is the energy
lost in a wavelength of propagation. With the definition of Q,
the amplitude of wave-field A along propagation direction x
can be represented as

A(x) = A0e−
ω

2cQ x, (2)

where A0 is the amplitude without an absorption influence, ω
is the angular frequency, and c is the velocity of the wave-
field. The exponentially decaying term causes the attenuation
and results in a wavelet broadening with a finite length, rather
than the original spike. It is not difficult to understand that
when Q decreases, the amplitude will decrease; on the other
hand, when Q increases to infinity, there is no absorption.

Here, we assume that Q is frequency independent. In order to
guarantee that the amplitude attenuates for negative frequency,
it is convenient to replace ω with |ω|, and then we have

A(x) = A0e−
|ω|
2cQ x. (3)

The dispersion is ignored here. That is convenient for later
analytical calculations.

Analytical Test Under 1D Normal Incidence

Following the Q definition, we can express the wave-field in
an anelastic medium analytically. In this section, the anelas-
tic data will be used as input to test the ISS internal multiple
attenuation algorithm analytically.

For 1D normal incidence, the ISS internal multiple attenuation
algorithm (e.g., Araújo, 1994; Weglein et al., 1997, 2003) can
be expressed as:

b3(kz) =
∫ ∞
−∞ b1(z)eikzzdz

∫ z−ε
−∞ b1(z1)e−ikzz1 dz1∫ ∞

z1+ε b1(z2)eikzz2 dz2,
(4)



where the deghosted data, D(t), for an incident spike wave,
satisfies D(ω) = b1(2ω/c0), and b1(z) =

∫ ∞
−∞ b1(kz)e−ikzzdkz,

kz = 2ω/c0 is the vertical wavenumber, and b1(z) corresponds
to an uncollapsed FK migration of the normal-incident spike
plane-wave data. ε in the formula is used to make sure the
events satisfy the lower-higher-lower relationship, and its value
is chosen on the basis of the length of the wavelet.

A two-reflector model is provided below as an example, with
the parameters listed in Fig.1, and with the depths of source
and receiver both assumed to be zero.

Figure 1: A two-reflector 1D model. P(1) and P(2) are pri-
maries from the first and the second interface, respectively; R1
and R2 are reflection coefficients; T12 and T21 are transmission
coefficients; c1 and c2 are the velocities; ρ1 and ρ2 are densi-
ties; and Q1 and Q2 are quality factors.

For a 1D model and a 1D normal-incident plane wave, two
primaries in the data D(ω) can be represented as:

P(1)(ω) = R1eiω 2z1
c1 e−|ω|

z1
c1Q1 , (5)

P(2)(ω) = T12R2T21eiω(
2z1
c1

+
2(z2−z1)

c2
)e−|ω|(

z1
c1Q1

+
z2−z1
c2Q2

)
. (6)

The dispersion effect is not considered here in order to simplify
the analytical calculation, i.e., the velocity does not change
with frequency.

After migrating the data into the pseudo depth domain to get
b1(z), we can substitute it into eqn.4. We further assume that
the two primaries are isolated and ε is chosen reasonably to
make sure there is no overlap between the two events among
the integrals. The predicted internal multiple b3(kz) can be
obtained:

b3(kz)

= (T12R2T21)
2R1eikz(z1+

2c1
c2

(z2−z1))e−|kz|( z1
2Q1

+
c1
c2

z2−z1
Q2

)e−|kz| z1
Q1 .
(7)

The actual first-order internal multiple in the kz domain is

IM(kz) =−T12T21R2
2R1eikz(z1+

2c1
c2

(z2−z1))e−|kz|( z1
2Q1

+
c1
c2

z2−z1
Q2

)
.

(8)

The relation between the predicted internal multiple and the
actual internal multiple is

b3(kz) =−T12T21e−|kz| z1
Q1 IM(kz). (9)

By using the ISS internal multiple attenuation algorithm, the
multiple can be predicted with the correct phase and an ap-
proximate amplitude.

If the data are without the influence of Q absorption, then from
Weglein et al. (2003), we can obtain the relation between pre-
dicted and actual internal multiple as

b3(kz) =−T12T21IM(kz). (10)

Comparing eqn.9 and eqn.10, it can be seen that the predicted
amplitude is less accurate for input data with Q absorption than
it is for data without Q; however, the phases are correct under
both conditions.

NUMERICAL TEST OF ISS INTERNAL MULTIPLE AT-
TENUATION ALGORITHM ON DATA WITH Q

A two-reflector 1D model (Fig.1) will be used as an example to
numerically test the effectiveness of ISS internal multiple at-
tenuator on anelastic data. The parameters are listed in Table1.

Layer
Number

Velocity
(m/s)

Density
(kg/m3)

Travel
Times (s)

Q Value

1 1500 1000 0.5 200
2 4000 1000 1.1 100
3 2000 1000

Table 1: The parameters of a two-reflector 1D model

By using the parameters of Table 1, the synthetic data involv-
ing the Q value of each layer are generalized analytically with-
out considering dispersion. The data include all the primaries
and all the first-order internal multiples.

Substituting the input data b1, shown as the blue line in Fig.2(a),
into ISS internal multiple attenuation algorithm, we can predict
internal multiple b3, shown as the red line in Fig.2(a). Actu-
ally, the red line in Fig.2(a) is -b3. It can be seen from eqn.9
that the polarity of b3 is opposite to that of the actual internal
multiple. In order to show the result more clearly, the predicted
internal multiple and the actual internal multiple are compared
in Fig.2(b). From the result, we can further establish that the
prediction result matches well in phase and approximately in
amplitude even with data from an attenuating medium, without
knowing Q absorption properties.

DISCUSSION

In this paper, the ISS internal multiple attenuation algorithm
is tested analytically and numerically using Q-influenced data,
with the conclusion that the prediction will have the correct
phase and an approximate amplitude.



(a)

(b)

Figure 2: The numerical result of ISS internal multiple attenu-
ation algorithm with anelastic data. (a): the input data b1 (blue
line) and the predicted multiple -b3 (red line); (b): the actual
internal multiple (blue line) and the predicted internal multiple
-b3 (red line).

The discussion in this paper gives us confidence that even for
an attenuating medium, the ISS internal multiple attenuator
can provide a result that retains the primary and partially re-
moves the internal multiple. This is an important step in a strat-
egy to eliminate internal multiples for both elastic and anelas-
tic media. That will allow application for exploration plays
where the geology exhibits significant absorption, e.g., pre-salt
plays in the deep water Gulf of Mexico, off-shore Brazil, the
Red Sea and the North Sea.
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APPENDIX A

B3 CALCULATION

The primaries in frequency domain can be expressed from eqn.5
and eqn.6. Since the migrated data in pseudo depth domain are
required to substitute into the internal multiple attenuation al-
gorithm, the variable should be changed from ω to kz =

2ω
c1

:

P(1)(kz) = R1eikzz1 e−|kz| z1
2Q1 , (A-1)

P(2)(kz) = T12R2T21eikz(z1+
c1
c2
(z2−z1))e−|kz|( z1

2Q1
+

c1
c2

z2−z1
2Q2

)
. (A-2)

Then, Fourier transform is applied over kz to pseudo depth do-
main to obtain

P(1)(z) = R1
π

z1
2Q1

(
z1

2Q1
)2+(z−z1)2 , (A-3)

P(2)(z) = T12R2T21
π

z1
2Q1

+
c1
c2

z2−z1
2Q2

(
z1

2Q1
+

c1
c2

z2−z1
2Q2

)2+(z−(z1+
c1
c2
(z2−z1))2

.(A-4)

b1(z) = P(1)(z)+P(2)(z), which will be substituted into ISS
internal multiple attenuation algorithm to predict the internal
multiple b3.

Based on Weglein et al. (2003), the 1D ISS internal multiple
attenuation algorithm is

b3(kz) =
∫ ∞
−∞ b1(z)eikzzdz

∫ z−ε
−∞ b1(z1)e−ikzz1 dz1∫ ∞

z1+ε b1(z2)eikzz2 dz2,
(A-5)

where ε is used to make sure the events satisfy the lower-
higher-lower relationship, and its value is chosen on the basis
of the length of the wavelet.

For this model, there are two primaries in the data. Now I
suppose these two events are isolated (Fig.A-1). The pseudo
depth of the first event is z1 with a length of 2a, whereas the
pseudo depth of the second event is z′2 with a length of 2b.
For ε in eqn.A-5 , it is chosen to satisfy ε ≥ max(2a,2b) and
ε ≤ (z′2−b− (z1 +a)).

Kaplan et al. (2004) change the integral order of eqn.A-5 and
rewrite the formula as:

b3(kz) =

∫ ∞

−∞
b1(z)e−ikzz[

∫ ∞

z+ε
b1(z′)eikzz′dz′]2dz. (A-6)

Since b1(z) = P(1)(z)+P(2)(z), eqn.A-6 can be divided into
two parts:



Figure A-1: A two-reflector model reflection record. P(1) and
P(2) are primaries from the first and the second interface, re-
spectively.

b3(kz)

=
∫ ∞
−∞ P(1)(z)e−ikzz[

∫ ∞
z+ε b1(z′)eikzz′dz′]2dz

+
∫ ∞
−∞ P(2)(z)e−ikzz[

∫ ∞
z+ε b1(z′)eikzz′dz′]2dz

=
∫ z1+a

z1−a P(1)(z)e−ikzz[
∫ ∞

z+ε b1(z′)eikzz′dz′]2dz (A−7−1)

+
∫ z′2+b

z′2−b P(2)(z)e−ikzz[
∫ ∞

z+ε b1(z′)eikzz′dz′]2dz. (A−7−2)
(A-7)

For (A-7-1), the integral limitation of z is [z1−a,z1 +a]. Con-
sider the lower limit of the integral of z’ and the constraint of
ε ,

z+ ε ≥ z1−a+ ε ≥ z1 +a+2a = z1 +a,

and

z+ ε ≤ z1 +a+ ε ≤ z1 +a+ z′2−b− (z1 +a) = z′2−b.

We can see that the lower limit of the second integral should
be after the end of the first event and before the beginning of
the second event, i.e., in [z+ ε,∞), the kernel of the second
integral is b1(z′) = P(2)(z′).

So

(A−7−1)
=
∫ z1+a

z1−a P(1)(z)e−ikzz[
∫ ∞

z+ε b1(z′)eikzz′dz′]2dz

=
∫ z1+a

z1−a P(1)(z)e−ikzz[
∫ ∞

z+ε P(2)(z′)eikzz′dz′]2dz
=
∫ ∞
−∞ P(1)(z)e−ikzz[

∫ ∞
−∞ P(2)(z′)eikzz′dz′]2dz

= (T12R2T21)
2R1eikz(z1+

2c1
c2

(z2−z1))e−|kz|( z1
2Q1

+
c1
c2

z2−z1
Q2

)e−|kz| z1
Q1 .

(A-8)

Similarly, for (A-7-2), the integral limitation of z is [z′2−b,z′2+
b]. Consider the lower limit of the integral of z’ and the con-
straint of ε ,

z+ ε ≥ z′2−b+ ε ≥ z′2 +b+2b = z′2 +b.

The lower limit of the second integral should be after the end
of the second event, i.e., in [z+ ε,∞), the kernel the of second
integral is b1(z′) = 0.

So

(A−7−2)

=
∫ z′2+b

z′2−b P(2)(z)e−ikzz[
∫ ∞

z+ε b1(z′)eikzz′dz′]2dz

= 0.

(A-9)

Now

b3(kz)
= (A−7−1)

= (T12R2T21)
2R1eikz(z1+

2c1
c2

(z2−z1))e−|kz|( z1
2Q1

+
c1
c2

z2−z1
Q2

)e−|kz| z1
Q1 .

(A-10)
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The first wave equation migration RTM with data consisting of primaries and internal multiples: the-
ory and 1D examples
Fang Liu and Arthur B. Weglein, Mission-Oriented Seismic Research Program, University of Houston

SUMMARY

Reverse time migration (RTM) is the cutting-edge imaging
method used in seismic exploration. In earlier RTM publica-
tions, density was often chosen and used to balance a medium
with velocity variation, such that the acoustic impedance− the
product of velocity and density− stays constant. Thus, normal
incidence reflections from sharp boundaries are avoided. In or-
der to be more complete, consistent, realistic, and predictive,
general velocity and density variations (not constrained by
impedance matching) are intentionally included in our study
so that we can test the impact of reflections on the Green’s
theorem-based wave-theory RTM algorithms.
The major objectives of this article are to advance our under-
standing and to provide concepts, added imaging capabilities,
and new algorithms for RTM. Although our objective of ex-
tracting useful subsurface information from recorded data is
not different from that of well-known previous RTM publica-
tions, our method is different.
Although all current methods utilize the wave equation, the
imaging condition they call upon, the time and space coinci-
dence of up- and down-going waves, ultimately results in an
asymptotic or ray based algorithm. Current RTM application
doesn’t correspond to predicting a source and receiver experi-
ment at depth at t = 0. That imaging principle is the defining
property of wave equation migration (WEM). The method of
this paper represents WEM for RTM.
In this paper, we also have some very early and very positive
news on the first wave equation migration RTM imaging tests,
with a discontinuous reference medium and images that have
the correct depth and amplitude (that is, producing the reflec-
tion coefficient at the correctly located target) with primaries
and multiples in the data. There is “no cross talk” or any other
artifacts as reported by other methods that seek to migrate data
with primaries and multiples. That is an implementation and
analysis of Weglein et al. (2011a,b) with primaries and internal
multiples in the data.

INTRODUCTION

One of the major early objectives of Reverse Time Migration
(RTM) is to obtain a better image of salt flanks through diving
waves than is obtained by one way migration imaging through
the complex overburden. The key new capability of the RTM
method compared with one-way migration algorithms is to al-
low two-way wave propagation in the imaging procedure. This
article follows closely the idea established in Weglein et al.
(2011a,b): achieving a Green’s function with vanishing Dirich-
let and Neumann boundary conditions at the deeper boundary,
to eliminate the need for measurements at depth.

As stated in Whitmore (1983); Baysal et al. (1983); Luo and
Schuster (2004); Fletcher et al. (2006); Liu et al. (2009) and

Vigh et al. (2009), accurate medium properties above the tar-
get are required for the RTM procedure discussed in this ar-
ticle. The major difference is that in most RTM algorithms
in the industry, a smoothed version of the velocity is used in
the imaging procedure to avoid reflections from the velocity
model itself, while the exact velocity models (often discontinu-
ous) are used in all three examples in this article. We adopt the
notations of the aforementioned articles as much as possible
while introducing some minor modifications to allow smooth
expansion/extension into new territory.

The major contributions of this article are:

• It provides two methods to calculate the Green’s func-
tion with vanishing Dirichlet and Neumann boundary
conditions for an arbitrary 1D medium.

• It incorporates the density variation for Green’s theo-
rem RTM.

• It provides the finite-difference scheme for calculating
the Green’s function that vanishes at the deeper bound-
ary.

• It provides a two-way propagation and downward con-
tinuation of wave fields, by using Green’s function with
double vanishing boundary conditions.

The following notations are worth mentioning at the begin-
ning: G+

0 and G−0 are used to denote causal and anti-causal
Green’s functions, respectively. GDN

0 is used to denote the
Green’s function with vanishing Dirichlet and Neumann bound-
ary conditions at the deeper boundary. k = ω/c0 where c0 is
the constant velocity of the reference medium, and ω is the
angular frequency.

THEORY

Green’s theorem wave-field prediction with density varia-
tion
First, let us assume the wave propagation problem in a volume
V bounded by a shallower depth A and deeper depth B:


∂

∂ z′
1

ρ(z′)
∂

∂ z′
+

ω2

ρ(z′)c2(z′)

ff
D(z′,ω) = 0, (1)

where A≤ z′ ≤ B is the depth, and ρ(z′) and c(z′) are the den-
sity and velocity fields, respectively. In exploration seismol-
ogy, we let the shallower depth A be the measurement surface
where the seismic acquisition takes place. The volume V is
the finite volume defined in the “finite volume model” for mi-
gration, the details of which can be found in Weglein et al.
(2011a). We measure D at the measurement surface z′ = A,
and the objective is to predict D anywhere between the shal-
lower surface and another surface with greater depth, z′ = B.



Imaging with authentic amplitude

This can be achieved via the solution of the wave-propagation
equation in the same medium by an idealized impulsive source
or Green’s function:


∂

∂ z′
1

ρ(z′)
∂

∂ z′
+

ω2

ρ(z′)c2(z′)

ff
G0(z,z′,ω) = δ (z− z′), (2)

where z is the location of the source, and A < z′ < B and z
increase in a downward direction. Abbreviating G0(z,z′,ω) as
G0, the solution for D in the interval A < z′ < B is given by
Green’s theorem:

D(z,ω) =
1

ρ(z′)


D(z′,ω)

∂G0

∂ z′
−G0

∂D(z′,ω)

∂ z′

ff˛̨̨̨z′=B

z′=A
, (3)

where A and B are the shallower and deeper boundaries, re-
spectively, of the volume to which the Green’s theorem is ap-
plied. It is identical to equation (43) of Weglein et al. (2011a),
except for the additional density contribution to the Green’s
theorem.

Note that in equation (3), the field values on the closed surface
of the volume V are necessary for predicting the field value
inside V . The surface of V contains two parts: the shallower
portion z′ = A and the deeper portion z′ = B. In seismic explo-
ration, the need for data at z′ = B is not available. For example,
one of the significant artifacts of the current RTM procedures is
caused by this phenomenon: there are events necessary for ac-
curate wave-field prediction that reach z′ = B but never return
to z′ = A. The solution, based on Green’s theorem without any
approximation, was first published in Weglein et al. (2011a)
and Weglein et al. (2011b), the basic idea can be summarized
as the following.

Since the wave equation is a second-order differential equa-
tion, its general solution has a great deal of freedom/flexibility.
In other words, for a wave equation with a specific medium
property, there are an infinite number of solutions. This free-
dom in choosing the Green’s function has been taken advan-
tage of in many seismic-imaging procedures. For example, the
most popular choice in wave-field prediction is the physical
solution G+

0 . In downward continuing an up-going wave field
to a subsurface, the anti-causal solution G−0 is often used.

If both G0 and ∂G0/∂ z′ vanish at the deeper boundary z′ =
B, where measurement is not available, then only the data at
the shallower surface (i.e., the actual measurement surface) is
needed in the calculation. We use GDN

0 to denote the Green’s
function with vanishing Dirichlet and Neumann boundary con-
ditions at the deeper boundary.

Downward continuation of both source and receiver

The original Green’s theorem in equation (3) is derived to down-
ward continue the wave field (i.e., receivers) to the subsurface
over a source-free region. It can also be used to downward
continue the sources down to the subsurface by taking advan-
tage of reciprocity: the recording is the same after the source
and receiver locations are exchanged.

Assuming we have data on the measurement surface: D(zg,zs)
(its ω dependency is ignored), we can use GDN

0 (z,zg) to down-
ward continue it from the receiver depth zg to the target depth
z:

D(z,zs) =

∂D(zg,zs)
∂ zg

GDN
0
`
z,zg
´
−D

`
zg,zs

´ ∂GDN
0 (z,zg)
∂ zg

ρ(zg)
. (4)

Taking the ∂
∂ zs

operation on equation (4), we have a similar

procedure to downward continue D(zg,zs)
∂ zs

to the subsurface:

∂D(z,zs)

∂ zs
=

∂ 2D(zg,zs)
∂ zg∂ zs

GDN
0
`
z,zg
´
− ∂D(zg,zs)

∂ zs

∂GDN
0 (z,zg)
∂ zg

ρ(zg)
. (5)

With equations (4) and (5), we downward continue the data D
and its partial derivative over zs to the subsurface location z.
According to reciprocity, D(z,zs) = E (zs,z), where E (zs,z) is
resulted from exchanging the source and receiver locations in
the experiment to generate D at the subsurface. The predicted
data E (zs,z) can be considered as the recording of receiver at
zs for a source located at z.

For this predicted experiment, the source is located at depth
z, according to the Green’s theorem which is derived for a
source-free region, we can downward continue the recording
at zs to any depth Z ≤ z.

In seismic migration, we downward continue E (zs,z) to the
same subsurface depth z with GDN

0 (z,zs) to have an experiment
with coincident source and receiver:

E (z,z) =
∂E(zs,z)

∂ zs
GDN

0 (z,zs)−E (zs,z)
∂GDN

0 (z,zs)
∂ zs

ρ(zs)
,

=

∂D(z,zs)
∂ zs

GDN
0 (z,zs)−D(z,zs)

∂GDN
0 (z,zs)
∂ zs

ρ(zs)
.

(6)

If the zs < zg and there is no heterogeneity above zs, the ∂
∂ zs

operation on D(zg,zs) is equivalent to multiplying −ik, in this
case, equation (6) can be further simplified:

E (z,z) =−
∂GDN

0 (z,zs)
∂ zs

+ ikGDN
0 (z,zs)

ρ(zs)
D(z,zs). (7)

NUMERICAL EXAMPLES

As an example, for a 2-reflector model (with an ideal impul-
sive source located at zs, the depth of receiver is zg > zs, the
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Depth Range Velocity Density
(−∞,a1) c0 ρ0
(a1,a2) c1 ρ1
(a2,∞) c2 ρ2

Table 1: The properties of an acoustic medium with two re-
flectors, at depth a1 and a2.

geological model is listed in Table 1), the data and its various
derivatives can be expressed as:

D(zg,zs) =
ρ0x−1

2ik

n
y+αy−1

o
,

∂D(zg,zs)

∂ zg
=

ρ0

2
x−1
n

y−αy−1
o

∂D(zg,zs)

∂ zs
=−ρ0

2
x−1
n

y+αy−1
o
,

∂ 2D(zg,zs)

∂ zg∂ zs
=

ρ0k
2i

x−1
n

y−αy−1
o
.

(8)

where x= eikzs , y= eikzg , σ = eikz, α = eik(2a1)
`
R1 +(1−R2

1)β
´
,

and β =
∞P

n=0
(−1)nRn

1Rn+1
2 eik1(2n+2)[a2−a1]. And R1 =

c1ρ1−c0ρ0
c1ρ1+c0ρ0

,

and R2 =
c2ρ2−c1ρ1
c2ρ2+c1ρ1

are the reflection coefficients from geolog-
ical boundaries.

Above the first reflector

For z< a1, the boundary values of the Green’s function are:

GDN
0
`
z,zg
´

= ρ0
eik(z−zg)−eik(zg−z)

2ik = ρ0
σy−1−σ−1y

2ik ,

GDN
0 (z,zs) = ρ0

σx−1−σ−1x
2ik ,

∂GDN
0 (z,zs)
∂ zg

= ρ0
σy−1+σ−1y
−2 ,

∂GDN
0 (z,zs)
∂ zs

= ρ0
σx−1+σ−1x
−2 .

(9)

After applying equation (8) into equation (7), we have:

E(z,z) =
1+ eik(2a1−2z) `R1 +(1−R2

1)β
´

2ik/ρ0
. (10)

The result above can be Fourier transformed into the time do-
main to have:

E(z,z, t)
−ρ0c0/2

=
H(t)+R1H (t− t1)+(1−R2

1)×∞P
n=0

(−1)nRn
1Rn+1

2 H (t− t1− (2n+2)t2)
(11)

where, t1 = 2a1−2z
c0

and t2 =
(a2−a1)

c1
. Balancing out the − ρ0c0

2
factor, the data after removing the direct wave is denoted as

D̂(z, t) ∆
= −2

ρ0c0
E(z,z, t)−H(t):

D̂(z, t) = R1H (t− t1)

+(1−R2
1)

∞X
n=0

(−1)nRn
1Rn+1

2 H (t− t1− (2n+2)t2) .
(12)

If we use the t = 0 imaging condition, we have:

D̂(z, t) =


0 if (z< a1)
R1 if (z = a1)

(13)

In other words, we obtained the image of the first reflector at
its actual depth a1 with its correct reflection coefficient as am-
plitude.

Between the first and second reflectors

For a1 < z< a2, we have:

GDN
0
`
z,zg
´
=

(R1λ −λ−1)µ +(λ −R1λ−1)µ−1

2ik1(1+R1)/ρ1
,

∂GDN
0
`
z,zg
´

∂ zg
=

(R1λ −λ−1)µ− (λ −R1λ−1)µ−1

2ik1(1+R1)/ρ1
,

(14)

where λ = eik1(z−a1), µ = eik(zg−a1). Using equations (14) and
(8), we have:The final result can be Fourier transformed into
the time domain as:

E(z,z, t)
−ρ1c1/2

=

H(t)+2
∞P

n=1
(−1)nRn

1Rn
2H
“

t− 2n(a2−a1)
c1

”
+

∞P
n=0

(−1)n+1Rn+1
1 Rn

2H
“

t− 2z+2na2−2(n+1)a1
c1

”
+

∞P
n=0

(−1)nRn
1Rn+1

2 H
“

t− 2(n+1)a2−2na1−2z
c1

”

Balancing out the − ρ1c1
2 factor, the data after removing the

direct wave is denoted as D̂(z, t) ∆
= −2

ρ1c1
E(z,z, t)−H(t):

D̂(z, t) =

8>>>>>><>>>>>>:

2
∞P

n=1
(−1)nRn

1Rn
2H
“

t− 2n(a2−a1)
c1

”
+

∞P
n=0

(−1)n+1Rn+1
1 Rn

2H
“

t− 2z+2na2−2(n+1)a1
c1

”
+

∞P
n=0

(−1)nRn
1Rn+1

2 H
“

t− 2(n+1)a2−2na1−2z
c1

”
and after taking the t = 0 imaging condition, we have:

D̂(z, t) =

8<:
−R1 if (z = a1)
0 if (a1 < z< a2)
R2 if (z = a2)

(15)

Note that in the previous section, i.e., to image above the first
reflector at a1, we obtain the amplitude R1 when z approach a1
from above. In this section we image below the first reflector
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at a1, the amplitude of the image is−R1 when z approaches a1
from below, as it should.

Below the second reflector

For z> a1, the boundary value of the Green’s function is:

GDN
0 (z,zg) =

ˆ
ν−1(R2λ −λ−1)+R1ν(λ −R2λ−1)

˜
µ

+
ˆ
R1ν−1(R2λ −λ−1)+ν(λ −R2λ−1)

˜
µ−1

2ik2(1+R1)(1+R2)/ρ2
,

where λ ≡ eik2(z−a2), µ ≡ eik(zg−a1), and ν ≡ eik1(a2−a1), k1 =
ω/c1.

The final downward continuation result can be expressed as:

E(z,z) =
ρ2

2ik2

8<: 1−R2eik2(2z−2a2)+(1−R2
2)e

ik2(2z−2a2)×
∞P

n=0
(−1)n+1Rn+1

1 Rn
2eik1(2n+2)(a2−a1) .

The time domain counterpart of the equation above is:

E(z,z, t) =−ρ2c2

2

8<: H(t)−R2H
“

t− 2z−2a2
c2

”
+(1−R2

2)H
“

t− 2z−2a2
c2
− (2n+2)(a2−a1)

c1

”
Balancing out the − ρ2c2

2 factor, the data after removing the

direct wave is denoted as D̂(z, t) ∆
= −2

ρ2c2
E(z,z, t)−H(t):

D̂(z, t) =

8<: −R2H
“

t− 2z−2a2
c2

”
+(1−R2

2)H
“

t− 2z−2a2
c2
− (2n+2)(a2−a1)

c1

”
and after taking the t = 0 imaging condition, we have:

D̂(z, t) =

−R2 if (z = a2)
0 if (a2 < z)

(16)

Note that in the previous section, i.e., to image between the
first and second reflectors, we obtain the amplitude R2 when z
approach a2 from above. In this section we image below the
second reflector at a2, the amplitude of the image is−R2 when
z approaches a2 from below, as it should.

CONCLUSIONS

A general and efficient procedure to compute the Green’s func-
tion with vanishing Dirichlet and Neumann boundary condi-
tions has been derived for a 1D medium of arbitrary complex-
ity, and its effectiveness has been demonstrated with numeri-
cal examples that accurately predict the up-going and down-
going wave field at depth using only the data on the shallower
measurement surface. The density contribution to the Green’s

theorem and Green’s function is accurately studied to better
understand its role in imaging. In order to generalize the idea
in this paper to a multidimensional earth, a finite-difference
scheme is derived and validated by comparison with an ana-
lytic benchmark.

We also have reported some very early and very positive news
on the first wave equation migration RTM imaging tests, with
a discontinuous reference medium and images that have the
correct depth and amplitude (that is, producing the reflection
coefficient at the correctly located target) with primaries and
multiples in the data. That is an implementation and analy-
sis of Weglein et al. (2011a,b) with primaries and multiples
in the data. There are no artifacts, “cross-talk” or other prob-
lems reported in the literature with other methods for migrating
primaries and multiples for imaging and/or illumination (We-
glein, 2014).
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Multiple attenuation: The status and a strategy that identifies and addresses current 
challenges 

 

Arthur B. Weglein  

 

M-OSRP, Physics Department, University of Houston 

 

5/20/2014 

 
The demand for new and improved capability in removing multiples is driven by the portfolio of the 

petroleum industry and by current and anticipated future exploration trends. For example, the industry 
moved to deep water roughly 30 years ago. With that move, highly effective multiple-removal methods 
that were being applied industry-wide suddenly bumped up against their assumptions, when applied to 
deep water plays, and failed. (As an example, deconvolution is based on 1D and on statistical 
assumptions, the latter not satisfied in deep water.) 

 
Since then, the overall industry trend to explore in progressively more complex and remote areas, with 

ill-defined and difficult-to-estimate subsurface properties and increasingly complex plays, is a constant 
that motivates the search for capabilities that will not require subsurface information. Methods that require 
various forms of subsurface information include, e.g., F-K, Radon, and Feedback demultiple methods. 

 
The inverse scattering series provides the opportunity to achieve all processing objectives directly and 

without subsurface information. The current inverse-scattering-series (ISS) internal-multiple-attenuation 
algorithm has a unique capability to predict the exact phase (time) and approximate amplitude of all 
internal multiples, at once, automatically, and without subsurface information. These properties separate 
the ISS internal-multiple-attenuation algorithm from all other methods, and make it the high-water mark 
of current internal-multiple effectiveness and explains its stand-alone capability. That is, those ISS 
properties and strengths are what all other current demultiple methods (e.g., Feedback loop methods, 
modeling and subtracting multiples, and filter methods) do not possess and cannot deliver (Weglein and 
Dragoset, 2005). 

 
Carvalho (1992), Carvalho and Weglein (1994), Araújo (1994), Araújo et al. (1994), Weglein et al. 

(1997), and Weglein et al. (2003) developed ISS free-surface-multiple elimination algorithms and 
internal-multiple attenuation algorithms. Field-data applications demonstrated their effectiveness. Several 
marine and onshore data examples are noted below. 

 
However, at every period in the history of E&P, the arrival of new capability to address the latest set 

of challenges has encouraged industry to explore in yet more daunting circumstances — situations never 
previously imagined, let alone considered, and beyond current capability to accommodate. That will once 
again demand a new and fundamentally higher level of capability and effectiveness. In this article, we 
describe how that’s the state of affairs for multiple attenuation today. 
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The petroleum industry’s current worldwide portfolio of both conventional and unconventional 

onshore plays, and of increasingly complex offshore plays — with new and unforeseen daunting 
challenges — has returned and rejuvenated an interest in multiple removal (and a demand for substantially 
increased effectiveness). Multiple removal has come back to center stage, both for our petroleum-industry 
sponsors and concomitantly as a key and fundamental research project for the Mission-Oriented Seismic 
Research Program (M-OSRP) at the University of Houston. 

1  Marine 

Early marine field-data examples of the promise and delivery of ISS free-surface-multiple and internal-
multiple algorithms can be found in the above-cited papers, SEG Abstracts, theses, and, e.g., in the 
Mississippi Canyon data tests in Weglein et al. (2003) pages R69 and R70. 

Those algorithms were recently employed on data from offshore Brazil, and the results were reported 
in Ferreira (2011) (see Figure 1). One of the conclusions in those field-data tests at Petrobras was that “no 
other method was able to show similar effectiveness in attenuating the internal multiples generated by the 
salt layers.” 

2  Onshore 

Fu et al. (2010), Terenghi et al. (2011), and Luo et al. (2011) describe the motivation, evaluation, and 
comparison of different approaches to the removal of internal multiples on complex synthetic and onshore 
data. Fu et al. (2010) concluded that “Their (ISS internal multiple algorithm) performance was 
demonstrated with complex synthetic and challenging land field data sets with encouraging results, where 
other internal multiple suppression methods were unable to demonstrate similar effectiveness.” 

Goodway (2013), Mackidd (2013) and Griffiths et al. (2013) were among those that came to the same 
conclusion. A recent paper by Kelamis et al. (2013) presented at the International Petroleum Technology 
Conference in Beijing, China was entitled “Strategies of Land Internal Multiple Elimination based on 
Inverse Scattering Series.” 

3  Good news 

At the 2013 post-convention SEG Internal Multiple Workshop (Thursday, September 26, 2013) it was 
positive and encouraging to see nine of the eleven presentations describe and exemplify the industry-wide 
impact and stand-alone capability (for complex offshore and onshore plays) of the inverse-scattering-
series (ISS) internal-multiple-attenuator. ISS internal-multiple attenuation has become fully mainstream 
within the petroleum industry. 

4  Challenge we face 

With all this “good news”, what could be the problem?  Industry’s portfolio/trend and focus today (and for 
the foreseeable future) makes it clear that a large and significant gap exists between the current challenge 
for the removal of free-surface multiples and internal multiples and the collective capabilities of the 
world-wide seismic exploration community (including, of course, M-OSRP). The specific issues are that: 
(1) the multiple generators and the subsurface properties are ill-defined and increasingly complex and (2) 
too often the multiple is proximal to or interfering with the primaries. The latter serious and significant 
issue can occur in many marine circumstances (e.g., in the North Sea) and frequently occurs with onshore 
plays. That type of challenge of removing multiples proximal to, and/or overlapping with, primaries 
(without damaging primaries) is well beyond the collective capability of the petroleum industry, 
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service companies and academic research groups and consortia to effectively address. It is not an issue 
that new and more complete data collection and acquisition will by itself address. We simply don’t have 
the theory and fundamental concepts in place today that are needed for algorithm development, 
implementation and application. That’s the basic reason we are unable to address the level of challenge we 
currently face worldwide in the petroleum industry. That’s the bottom line. To adequately address the 
current industry challenge, we will need to be able to predict exactly the phase and amplitude of all 
internal multiples and thereby surgically remove (eliminate) the multiples at all offsets, directly, and 
without subsurface information, and without damaging primaries. No one today is able to provide that for 
marine applications, let alone for the even more challenging onshore plays. 

There is a need for new basic concepts and fundamental theory development that must begin with a 
frank and forthright recognition of the problem, its economic moment and significance, and the current 
technical gap. We must recognize the problem we face today and our collective inability to address it. 
New concepts and algorithms will need to be produced, and then will be followed by addressing the 
practical application and implementation issues. 

5  The plan 

At the 2013 SEG International Conference (Recent Advances and the Road Ahead Session), we proposed 
and described a three-pronged strategy (please see the link and slides below) that M-OSRP will pursue as 
a direct response to that challenge. It will have the potential to provide the necessary step-change increase 
in capability, and thereby to respond effectively to this current and pressing problem. The level and 
magnitude of the challenge, and the potential for opening and delineating new petroleum reserves and 
achieving improved drilling success rates all underlie our commitment to developing and delivering 
fundamental new concepts and algorithms that offer a step-change increase in capability. Multiple 
removal has returned from being viewed as a relatively mature subject and project that helped M-OSRP 
“pay the rent” and is back to occupying center stage as a major research project and focus within M-
OSRP. We feel that our background and experience gives us a good chance to develop, and to deliver, the 
next level of required capability. 

The three-pronged strategy to respond to the current open issues and pressing challenges in removing 
multiples is as follows:  
(1) Develop the ISS prerequisites for predicting the reference wave field (wavelet and radiation pattern) 
and producing de-ghosted data (in particular, for on-shore and ocean bottom acquisition) that are direct 
and do not require subsurface information;  
(2) Develop internal-multiple-elimination algorithms from the inverse scattering series;  
(3) Develop a replacement for the energy-minimization criteria for adaptive subtraction, that derives from, 
and always aligns with and serves, the inverse-scattering-series free-surface and internal-multiple 
algorithms.  
This three-pronged strategy represents a consistent and aligned processing chain, with one single 
objective: providing a direct and practical solution to the removal of all multiples, without requiring any 
subsurface information, and without damaging primaries. 

The plan is first to progress and deliver items (2) and (3) for marine applications (since item (1) is in 
relatively good shape for marine application), and simultaneously to progress item (1) for onshore plays. 
Then, we will return to onshore exploration with the full suite of (1), (2) and (3) ingredients in place. Our 
plan is to deliver in stages, with offshore delivery coming before onshore delivery. 

Below please find links for the SEG abstracts/posters/presentations and slides that relate to this 
communication. 

http://mosrp.uh.edu/events/event-news/seg-annual-meeting-2013 
http://mosrp.uh.edu/news/seg-annual-meeting-2013 
http://mosrp.uh.edu/ 
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http://arthurweglein.com 

6  Summary 

Today, the ISS internal-multiple attenuator combined with an energy-minimization adaptive subtraction is 
the most capable method for removing internal multiples. However, the current ISS attenuator-plus-
adaptive-subtraction method will fail under the pressing and prioritized challenge of removing internal 
multiples that are proximal to and/or interfering with primaries. In this note, we describe a three-pronged 
strategy for providing an effective response to this pressing and prioritized challenge while retaining and 
adding to the strengths of the current ISS attenuator. 
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9  Figure captions 

Figure 1: Stack before (a) and after (b) free-surface-multiple removal; common offset sections before (c) 
and after (d) internal-multiple attenuation (Ferreira, 2011). 
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This article is an Executive Summary of an invited presentation, “Multiples: signal or 

noise?”, at the upcoming 2014 SEG Conference and Convention, “Recent Advances and 
the Road Ahead: Special Session”. 

 
This is the second of a two-article set. In the first of these two articles, that appeared in 

the April, 2014 E&P Magazine, we described the state of seismic multiple removal: (1) 
the current capability; (2) the challenges and (3) a strategy to directly respond to the 
current challenges. That article relates to “the exclusive view” of seismic reflection data, 
where primaries are signal and multiples are noise to be removed. 

 
There is an alternative view, “the inclusive view” of processing seismic reflection 

data, where primaries and multiples are treated as signal and used for seismic imaging. 
This article examines the recent activity within the inclusive view. 

 
Migration has two ingredients: (1) a wave-propagation component and (2) an imaging 

principle or concept. Jon Claerbout (Claerbout, 1971; Riley and Claerbout, 1976) was the 
initial and key wave-equation-migration imaging-concept pioneer, and together with Stolt 
(1978) and Lowenthal et al. (1985), were among those who introduced imaging 
conditions for locating reflectors at depth from surface-recorded data. 

 
The three key imaging conditions that were introduced are:  
(1) time and space coincidence of up and downgoing waves,  
(2) the exploding-reflector model, and  
(3) predicting a source and receiver experiment at a coincident-source-and-receiver 

subsurface point, and asking for time equals zero (the definition of Wave-Equation 
Migration (WEM)). 
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For a normal-incident spike plane wave incident on a horizontal reflector, these three 
imaging concepts are totally equivalent. For a non-zero-offset surface-seismic-data 
experiment they are no longer equivalent. Wave-equation migration (WEM) is defined as 
using the third imaging condition, (3), predicting a source and receiver experiment at 
depth at time equals zero. Imaging conditions (1) and (2) are the basis of asymptotic 
approximate, ray travel-time-curve “Kirchhoff-like” algorithms. 

 
The properties and benefits of Wave-Equation Migration (WEM) (condition (3)) in 

comparison to asymptotic “Kirchhoff-like” migration (from imaging conditions (1) and 
(2)) are:  

(1) Definitiveness as to whether or not to a subsurface point corresponds to structure;  
(2) Angle-dependent reflection coefficient at the imaged point; and  
(3) Ubiquitous wave propagation and wave illumination, compared to limited 

propagation and illumination of asymptotic ray-theory migration. 
 
All current RTM methods correspond to asymptotic ray-based migration, derived from 

imaging condition (1). 
 
The currently applied RTM methods consist of back propagating the receiver field and 

forward propagating the source field, where each is carried out using the wave equation. 
However, the cross-correlation at zero lag is imaging condition (1) and that step is when 
the RTM method entered asymptotics and “Kirchhoff” ray theory. 

 
That might come as a surprise to RTM researchers and users, given the immense 

wave-equation computation and expense to implement, to hear that current RTM is not 
wave equation migration (WEM). 

 
We provided (Weglein et al., 2011a, 2011b; Liu and Weglein, 2013) the first 

prediction of a source and receiver experiment at depth for two-way wave propagation, 
that is, the first WEM RTM. WEM RTM is designed for: (1) turning-wave primaries, and 
(2) for reflection data consisting of primaries and multiples. The added value of WEM 
RTM compared to all current RTM methods are the same three benefits as between 
wave-equation migration and asymptotic ray Kirchhoff migration, for one-way waves, 
listed above. 

 
In Figure 1, we illustrate (from Liu and Weglein, 2013) the result from applying the 

first WEM RTM algorithm to data that consists of primaries and all internal multiples, 
from a one-dimensional layered medium. The output of the WEM RTM (coincident 
source and receiver experiment at time equals zero) is shown at different locations in the 
subsurface, with the correct location of structure. In addition, the correct reflection 
coefficient is provided on each side of each reflector, by the experiment being predicted 
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for a coincident source and a receiver slightly above or slightly below each reflector, 
respectively. Hence, to migrate with primaries and multiples, you simply follow what 
George Green prescribed in 1828, extended by Weglein et al. (2011b) for exploration 
seismology where the measured wavefield data is only available on the upper surface of 
the volume. There is no need for “secondary distributed sources” caused by data, 
higher-order “scattering theory” allusions and incantations, or other ad hoc or unclear 
ill-defined constructs, including unnecessarily separating primaries and multiples. And no 
“crosstalk” artifacts or other imponderable and irreconcilable problems arise. 

 
Hence, the theory for WEM imaging with data from “the inclusive view” is not really 

very new in concept. We simply arranged for Green’s theorem to require data only on the 
upper surface, leading to the first WEM RTM. 

 
Recent efforts in the use of primaries and multiples are aimed at improved image 

illumination. 
 
A good place to start that discussion is with a method that inputs primaries and 

multiples and correctly locates reflectors in depth. Correct location comes before good 
illumination; a misplaced but well illuminated image is of little or no value. 

 
Claerbout famously observed, many years ago, that illumination is not an issue, in 

principle, for wave theory and wave-theory migration (WEM). Illumination is a 
fundamental and intrinsic issue for rays and all asymptotic (e.g., Kirchhoff) migration 
methods and asymptotic RTM. Waves go everywhere and are space-filling. Rays don’t. 
Where rays don’t go, we have an intrinsic asymptotic-method-produced illumination 
issue. All currently applied RTM methods are asymptotic migration. Current industry 
RTM methods certainly use the wave equation in running the data backwards and the 
source forward and cross correlating at zero lag. However, using the wave equation is not 
the same as being a wave-equation migration. Wave-equation migration predicts a source 
and receiver experiment at depth, and all current RTM methods do not meet that 
requirement and are not wave-equation migration. Hence, all the currently employed 
RTM methods are, on their own (for primaries, or primaries and multiples), contributing 
to an algorithmic-induced limited-illumination issue. 

 
Unfortunately, the methods currently put forth and pursued to realize “the inclusive 

view” for illumination do not hark back and begin their development with the solid 
wavefield prediction provided by Green (1828). The recent and current “inclusive view” 
activity very often has shaky underpinnings, at best, and a lack of any clear and firm 
technical foundation and framework, with ad hoc constructs, offered with full confidence 
and conviction. 
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The current “inclusive” activity is, without exception, using variants of asymptotic 
RTM for primaries, multiples, or primaries and multiples for improved illumination. 
However, these methods produce false images at depth (due to crosstalk), a serious 
downside. There doesn’t seem to be a way to address that downside and to remove these 
false events. The reason those “illumination” enhanced imaging methods cannot be 
advanced and improved to remove the crosstalk-generated false images is there is no clear 
wave-theory-based starting point and derivation of the method, to begin with. If there 
was, we could then back up, avoid the unacceptable assumption, and fix it. 

 
Looking for a theory?  George Green in (1828) basically provided the theory for 

imaging data with primaries and multiples: that’s the place to start. That thinking led to 
WEM RTM and the results in Figure 1, correct migration-inversion images without 
cross-talk artifacts. 

 
Why have we treated primaries as signal and multiples as a form of noise?  Primaries 

are much more accepting of an approximate, smooth velocity for structural imaging. We 
very often cannot provide an adequate smooth velocity for imaging primaries. Providing 
an adequate smooth velocity for imaging diving waves going down and under salt 
remains a tough and daunting problem. For primaries and multiples in your data, as in 
Figure 1, will require an accurate, discontinuous migration velocity model for predicting a 
source and receiver experiment at depth, for wave-equation migration. Determining an 
accurate discontinuous velocity model is not a realistic assumption, not now, and not for 
anytime in the foreseeable future. 

 
Wave-equation migration imaging with primaries and internal multiples requires an 

accurate, discontinuous velocity model. 
 
When considering imaging primaries and multiples we recommend thinking “what 

would George Green do? ” 
 
Multiples contain information. Are they signal?  Of course multiples contain 

information, but that’s not the point. The point is they contain too much information. 
Containing information doesn’t classify an event as signal; being able to reliably extract 
information from an event defines an event as signal. 

 
The reason we separate primaries from multiples in exploration seismology is not due 

to lack of theory. The basic theory is almost 200 years old. It is due to the inability, in 
practice, to provide an adequate discontinuous velocity model necessary for the inclusive 
holistic view. 

 



5 

While we recognize the value that current asymptotic RTM illumination efforts have 
demonstrated for shallow reflectors using free-surface multiples, we advocate: (1) starting 
with WEM RTM that best serve illumination objectives, (2) see what illumination with 
primaries will provide, and (3) then perhaps consider adding multiples to the mix, 
following a Green’s theorem prescription. That approach will never produce “crosstalk” 
or other irreconcilable false images. 

 
We need to maintain a balance and perspective and not to be distracted by the 

“inclusive view” vogue and fashion, to lose our way and start to seriously think of 
multiples as signal. They are not. And it’s not personal. The point is that the accurate and 
discontinuous subsurface information they require to be considered signal is unattainable. 
Far beyond unobtainable. Multiples were and remain noise. In general, new proposed 
seismic methods and strategies that will require more detailed subsurface information are 
headed in exactly in the wrong direction: technically and historically. 

 
We recommend maintaining our focus on the real, tough, adult and pressing 

challenges of finding significantly more effective methods to remove multiples, directly 
and without subsurface information. That brings us full circle, back to the first of these 
two E&P Magazine articles. That’s where our primary focus and attention resides. 

 
Below please find a link for the SEG abstracts/posters/presentations and slides that 

relate to this communication.  
http://mosrp.uh.edu/events/event-news/seg-annual-meeting-2013-2014 
 
The link below has relevant references for the April 2014 and May 2014 E&P articles:  
http://mosrp.uh.edu/research/publications/ep-magazine-2014 
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Figure caption 
 
Figure 1: WEM RTM imaging with primaries and internal multiples. Result is a 

correct migration-inversion above and below each reflector, with no ”crosstalk” false 
images. 
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Editor’s note: The following article brings to light a cautionary concern 
(and a set of fundamental and substantive issues, related to indirect 
methods, in general, that benefits from a broader and deeper under-
standing and perspective), regarding the validity of basic assumptions 
made in FWI. It was slated to appear in the special section on FWI in 
September. The article also describes and exemplifies a direct inverse 
method for the same FWI-type objectives. However as that issue was 
fully subscribed, given the popularity of FWI, it was decided, in 
conjunction with the section’s guest editors (Antoine Guitton, Tariq 
Alkhalifah, and Chris Liner) that the article appear in the October 
TLE. In the introduction to the FWI section, the guest editors pose 
some admonitory questions: “Are we heading in the right direction? Are 
we in the right valley? Or within a bigger context, is FWI the way to 
go?” In this context, Weglein’s article is a timely and pertinent riposte 
that will be of significant interest and may elicit a degree of controversy 
to those working in the FWI field.

A central purpose of this article is to bring an alternative 
voice, perspective, and understanding to the latest 

geophysical stampede, technical bubble, and self-proclaimed 
seismic cure-all, the so-called “full-waveform inversion” 
or FWI. If you think this is exaggerated, I refer to the 
advertisement/announcement of the 2013 SEG Workshop 
on FWI whose opening line is, “Full-waveform inversion 
has emerged as the final and ultimate solution to the Earth 
resolution and imaging objective.”

Besides representing language, attitude, and a viewpoint 
that have no place anywhere in science, and, in particular, in 
exploration seismology, the fact is that the method, as put 
forth, is from a fundamental and basic-principle point of view 
(aside from, and well before, any practical considerations and 
track record of added-value are considered) hardly deserving 
of the label “inversion”, let alone all the other extreme and 
unjustified claims and attributes, as being the “deliverance” 
and the last and final word on the subject.

From a direct-inversion point of view, and for the algo-
rithms that are derived for solving the exact same problem of 
estimating, for example, the location of velocity anomalies and 
shallow hazards, and velocity changes at the top and base salt, 
all the current approaches to so-called full-waveform inver-
sion are: (1) always using the wrong data, (2) always using the 
wrong algorithms, and (3) all too often, using the wrong Earth 
model, as well. Making this clear is one purpose of this article.

The issue being discussed in this article is not a matter 
of semantics and is not a labeling/mislabeling issue; it is the 
substantive issue of what data and what algorithms are called 
for by direct inversion to achieve certain seismic processing 
objectives. In particular, the focus here is on objectives that 
rely on the amplitude of reflection data as a function of in-
cident angle to determine changes in, e.g., P-wave velocity, 
AVO parameters, or so-called FWI.

Another purpose of this article is to propose and exem-
plify an alternative and direct inverse solution that actually 

A timely and necessary antidote to indirect methods and so-called 
P-wave FWI
ARTHUR B. WEGLEIN, University of Houston

deserves the label “inversion” and could be useful for those 
goals and objectives, and perhaps can actually earn, deserve, 
and warrant a label of FWI, although never as the “ultimate 
and final solution.” The direct-inversion approach provides 
not only a method but also a framework and platform for 
understanding when it will and will not work. All current so-
called FWI methods are indirect model-matching methods, 
and indirect methods can never provide that capability and 
clarity. Model-matching run backward, or solving a forward 
problem in an inverse sense, resides behind all the current 
indirect P-wave-only so-called FWI and is never equivalent 
to a direct inverse solution for any nonlinear problem, nor 
does it even represent a fully and completely aligned goal and 
property of a direct inverse solution.

A third and perhaps the most important goal of this article 
is to provide a new, comprehensive overview and bridge for 
these two approaches for those who may be following, apply-
ing, and/or considering the current so-called indirect model-
matching FWI approach and those proposing, interested in, 
or providing a road to a direct inverse methodology. It will be 
shown how these two approaches have the same starting point, 
and in fact, have the same exact generalized Taylor series ex-
pansion for modeling data and for expressing the actual data in 
terms of a reference model and reference data and the difference 
between actual and reference properties. The two approaches 
differ in how they view each of the same terms of that forward 
series. One view of those individual terms leads to a Taylor series 
form that does not allow a direct inverse series and that leaves 
as the only option the running of a forward (linear truncated) 
series in an inverse sense. That forward description viewed as 
only a generalized Taylor series results in, and provides no other 
choice other than, an indirect model-matching approach (e.g., 
as seen in AVO and the so-called FWI methods). This is the 
mainstream/conventional view of the forward description as a 
Taylor series, and, while easy to understand, that view precludes 
a direct inverse, and therefore explains the widespread use of 
indirect model-matching approaches. Another view of those 
individual terms in the forward Taylor series that derives from 
the fundamental equation of scattering theory (the Lippmann-
Schwinger equation) recognizes that the forward Taylor series 
is a special class of generalized Taylor series—a generalized geo-
metric series. Further, it is a geometric series for a forward prob-
lem, and it has a geometric series for a direct inverse solution. 
Without understanding and calling upon the scattering-theory 
equation, that recognition of the forward series as being geo-
metric is not possible, and a direct inverse solution would not be 
achievable. All of the consequences and differences between the 
forward model-matching approach leading to methods such as 
so-called FWI and the direct inverse methods, derived from the 
inverse scattering series, have that simple, accessible, and under-
standable origin. The details, arguments, and examples behind 
these three objectives and goals are provided below.
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Let’s begin. Seismic processing is an inverse problem, in 
which measurements on or near the surface of the Earth are 
used to make inferences about the nature of the subsurface that 
are relevant to the exploration and production of hydrocarbons.

There was a time, not too long in the past, when a dis-
cussion of any method for solving inverse or data-processing 
problems always began with a definition of direct and indirect 
methods. The latter was deemed the less respectable and the 
lesser choice between the two, considered out of despera-
tion and resignation and offered with hesitation and apology. 
It was associated among “inversionists” with searching and 
model matching rather than with seeking a direct, clear, and 
definitive solution through a math-physics analysis.

It appears that earlier, healthy understanding and respect 
for the framework and definitiveness of direct inverse meth-
ods have largely given way or have been pushed aside, with 
serious and substantive negative and injurious conceptual and 
practical consequences. Among the latter manifestations and 
consequences is the totally mislabeled and ubiquitous phe-
nomenon of so-called “full-wave inversion” (FWI) methods. 
Among FWI references are Brossier et al. (2009), Crase et 
al. (1990), Gauthier et al. (1986), Nolan and Symes (1997), 
Pratt (1999), Pratt and Shipp (1999), Sirgue et al. (2010), 
Symes (2008), Tarantola (1984, 1986), Valenciano et al. 
(2006), Vigh and Starr (2008), and Zhou et al. (2012).

This note advocates (whenever possible) direct methods 
for solving processing problems and providing prerequisites. 
Direct methods offer many conceptual and practical benefits 
over indirect methods. Advantages of direct methods begin 
with actually knowing that you are solving the problem that 
you are interested in solving.

How can you recognize a direct versus an indirect meth-
od? Consider the quadratic equation

,                           (1)

and the solution

.                   (2)

Equation 2 is a direct solution for the roots of Equation 
1. On the other hand, if you see a cost function involved in a 
solution, the solution is indirect. Also, if you see a modeling 
equation being solved in an inverse sense, or an iteratively 
linear updating, those are each direct indicators of an indirect 
solution and a model-matching approach, which too often 
can start with an incorrect or insufficient modeling equation 
and a matching of fundamentally inadequate data. The only 
time that a forward problem solved in an inverse sense can 
be equivalent to a direct inverse solution is when the direct 
inverse solution is linear. For example, locating reflectors at 
depth with a known velocity model is linear, and, hence, e.g., 
(asymptotic) RTM is a modeling run backward (i.e., in an 
inverse sense) to directly determine structure. Another trans-
parent example is given by the forward geometric series

  (3)
and the inverse

  (4)

                                         when |S/a |. < 1

If, rather than these nonlinear relationships among S, a, 
and r, we instead imagine an exact linear relationship that S, 
a, and r might satisfy, e.g.,

,                                    (5)

then we have the forward problem of solving for S given a 
and r, and the inverse problem becomes solving for r in terms 
of S and a. The direct inverse solution r = S/a is equivalent to 
the forward problem solved in an inverse sense, solving S = ar 
for r in terms of S and a. However, if the forward relationship 
assumed among S, a, and r is a quadratic relationship (an ap-
proximate of the actual nonlinear forward problem given by 
Equation 3), we have

  .                                (6)

Then, solving the forward problem, Equation 6, in an 
inverse sense is a quadratic solution with two roots that can 
be real or imaginary, whereas the solution to Equation 4 is a 
single real solution for r. In place of Equation 6, think of the 
linearized forward Zoeppritz equation for RPP solved in an in-
verse sense, and the point is clear. This simple and transparent 
example demonstrates a pitfall of thinking that a direct inver-
sion is equivalent to a forward problem solved in an inverse 
sense. Another example, pointed out in Weglein et al. (2009), 
is the direct inverse solution for predicting and removing free-
surface and internal multiples, from the inverse-scattering se-
ries, where these two distinct algorithms are independent not 
only of subsurface information, they are also independent of 
whether we assume the Earth is acoustic, elastic, anelastic, het-
erogeneous, and anisotropic. The multiple-removal algorithms 
(which are direct and nonlinear) do not change one line of 
code when you change your mind about the Earth model type 
you want to consider. Can you imagine a model-matching and 
subtraction method or linear-updating method for predicting 
and removing multiples, with any cost function, L1, L2, LP, that 
would be independent of subsurface properties and the type 
of Earth model you are using to generate the synthetic data? It 
is hard to overstate the significance of this point. The widely 
recognized benefit to industry from effectively removing free-
surface and internal multiples using algorithms derived from 
the inverse scattering series, for offshore and onshore plays, 
never would have occurred if the indirect inversion, model-
matching, and iterative updating, and FWI-like thinking, 
were the approaches pursued for removing multiples.

In general, we look at inversion as a set of tasks: free-
surface and internal-multiple removal, depth imaging, and 
nonlinear AVO. For the purposes of this article and for dis-
cussing FWI, the focus is entirely on how the ISS addresses 
that parameter estimation task in isolation, and as if all other 
tasks (e.g., multiple removal) had been previously achieved.
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Indirect methods such as flat common-image gathers (CIG) 
were developed as a response to the inability to directly solve 
for and adequately provide a velocity model for depth imaging, 
and those CIGs represent a necessary condition at the image 
that an accurate velocity would satisfy. References for CIGs are 
Anderson et al. (2012), Baumstein et al. (2009), Ben-Hadj-ali 
et al. (2008, 2009), Biondi and Sava (1999), Biondi and Symes 
(2004), Brandsberg-Dahl et al. (1999), Chavent and Jacewitz 
(1995), Fitchner (2011), Guasch et al. (2012), Kapoor et al. 
(2012), Rickett and Sava (2002), Sava et al. (2005), Sava and 
Fomel (2003), Sirgue et al. (2009, 2010, 2012), Symes and 
Carazzone (1991), Tarantola (1987), and Zhang and Biondi 
(2013). Many wrong velocity models can and will also satisfy 
a flat common-image-gather criterion, especially under com-
plex imaging circumstances. Indeed, unquestioned faith in the 
power of satisfying the flat CIG criterion can and does con-
tribute to dry-hole drilling. Mathematicians who work on the 
latter types of CIG problems would better spend their time 
describing the underlying lack of a necessary and sufficient 
condition, and the consequences, rather than dressing up and 
obfuscating the necessary but insufficient condition in fancy, 
rigorous, and abstract new clothes.

It seems that the recent surge of interest in estimating 
changes in velocity is fueled by: (1) the improved ability to 
produce low-frequency and low-vertical-wavenumber infor-
mation from new acquisition and improved deghosting; (2) 
the implicit admission of serious problems with methods to 
estimate velocity models (e.g., with tomography, iterative flat 
CIG searching, and the like); and, of course, (3) the persistent 
and unacceptable dry-hole drilling rate. Today, for example, 
we basically remain fixed and without significant progress (at 
a one-in-ten success rate) in drilling successful exploration 
wells in the deep-water Gulf of Mexico (Hawthorn, 2009; 
Iledare and Kaiser, 2007).

Indirect methods should be considered only when direct 
methods are not available or are inadequate, or when you can-
not figure out how to solve a problem directly. Indirect meth-
ods are often and reasonably employed to allow a channel or an 
adjustment (a dial) for phenomena and components of reality 
that are outside and external to the physics of the system you 
have chosen and defined. Of course, there always are, and al-
ways will be, phenomena outside your assumed and adopted 
physics and system that must be accommodated and that are 
ignored at your peril. That’s the proper realm and role for in-
direct methods. Even then, however, they need to be applied 
judiciously and always with scrutiny of what resides behind 
cost-function-criteria assumptions. When a direct method 
to predict the amplitude and phase of free-surface multiples, 
such as inverse-scattering-series free-surface-multiple removal, 
includes the obliquity factor, and has the direct satisfaction of 
prerequisites such as source and receiver deghosting and wave-
let estimation, then the better the direct method of providing 
the prerequisites performs, the better the free-surface demul-
tiple provides the amplitude and phase of the free-surface mul-
tiples. If at any stage you decide you can “roll in” obliquity, 
source and receiver deghosting, and wavelet estimation into a 
catch-all energy-minimization adaptive subtraction, you run 

into the serious problem: No matter how much better you 
achieve a satisfaction of energy minimization, you still have 
no guarantee that that improved energy minimization aligns 
with and supports free-surface-multiple removal while preserv-
ing primaries. In fact, removal of multiples can increase “en-
ergy” (e.g., when you have destructive interference between 
a primary and a multiple), and it is widely understood that 
the energy-minimization criteria are among today’s greatest 
impediments to effectively removing free-surface and internal 
multiples for complex onshore and marine plays. The crite-
ria behind the indirect adaptive step matter. Within the area 
of free-surface and internal-multiple attenuation, the rush to 
and overreliance on energy-minimization adaptive subtraction 
contributes to the inability to effectively and surgically remove 
multiples at all offsets and without damaging primaries. That 
specific issue was discussed in a recent report to the M-OSRP 
consortium on seeking adaptive criteria (Weglein, 2012) that 
serve as an alternative and replacement for energy minimiza-
tion for free-surface multiple removal. However, the trend of 
using indirect methods for phenomena and processing goals 
within the system, and for providing prerequisites within the 
system, is in general a conceptual and practical mistake. There 
has been a dangerous and growing tendency to solve everything 
inside and outside the system by using indirect methods and 
cost functions. Of course the need for ever-faster computers is 
universally recognized and supported. However, the growth in 
computational physics, often at the expense of mathematical 
physics, and the availability of ever-faster computers, encourag-
es the rush to “cost functions” and to searching without think-
ing, and thus represents a ubiquitous, misguided, and unfor-
tunate trend, with “solutions” that aren’t. When we give up on 
physics and determinism, we look at statistics and searching, 
and indirect methods become a “natural” choice and are always 
readily available, along with their drawbacks and consequences.

A direct method provides a framework of precise data needs, 
and it delivers a straight-ahead formula that takes in your data 
and actually solves and explicitly and directly outputs the solu-
tion that you seek. Indirect methods can never provide that 
clarity or confidence. Model-matching and iterative updating 
by any fancy name, such as a new “Frechet derivative,” and 
the so-called “full-wave inversion,” are model-matching and are 
never, ever, equivalent to a direct inversion for the Earth’s elas-
tic mechanical property changes. The distinction is significant 
and has both conceptual and mercantile consequences.

Here is an example of the difference. Suppose someone 
said that you could take a single seismic trace that is a single 
function of time, and invert simultaneously for velocity and 
density, each as a function of depth in a 1D Earth.

Today, you might reasonably be cautious and concerned 
because the dimension of the data is less than the overall di-
mension of the quantities you seek to determine. We have 
learned as an industry to be dubious in the latter single-trace, 
solve-for-two-functions-of-depth case. We look skeptically at 
those who would model-match and pull all kinds of arcane 
cost functions and generalized inverses together, using differ-
ent norms and constraints and full-wave predictions of that 
single trace that can be model-matched with amplitude and 
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phase so that we can call that model-matching scheme “full-
waveform inversion.” Why can’t we solve for density and ve-
locity uniquely from a single trace, because we can certainly 
model the single trace from knowing the velocity and density 
as a function of depth? That’s a beginning and an example of 
thinking that solving a forward problem in an inverse sense is 
in some way actually solving the inverse problem. What came 
along in that earlier time, as a response to this question, were 
direct acoustic inversion methods that said that inverting 
for velocity and density as functions of depth from a single 
trace is impossible, or at least that it is impossible to pro-
vide the unique and actual velocity and density as a function 
of depth. That direct-inversion framework convinced many 
(hopefully most) people that the one-trace-in, two-functions-
out approach is not a question or an issue of which indirect 
algorithm or LP cost function you are using. It is more ba-
sic and stands above algorithm; it’s an inadequate-data issue. 
No algorithm with that single-trace data input should call 
itself “inversion,” even if that single trace was model-matched 
and iteratively updated and computed with amplitude and 
phase and, with too much self-regard, labels itself as “full-
wave inversion.” We learned to stop running that single trace 
through search algorithms for velocity and density—and that 
lesson was absorbed within our collective psyches in our in-
dustry—for whatever the cost function and local or global 
minimum you employed. Using the wrong and fundamental-
ly inadequate data closes the book and constitutes the end of 

the story. Thus, we learned to look for and respect dimension 
between the data and the sought-after parameters we want to 
identify. That is a good thing, but it turns out that it’s not a 
good-enough thing. In fact, direct acoustic wavefield inver-
sion for a 1D Earth requires all the traces for a given shot 
record in order to determine one or more parameters (e.g.,   
VP and density) as a function of depth.

This article will show (in a similar way) that the fact that you 
can solve the forward Zoeppritz equations (or a linear approxi-
mate) for a PP reflection coefficient as a function of incident 
angle and the changes in , μ, and  across the reflector does not 
imply that you can solve for changes in , μ, and  in terms of 
the PP reflection coefficient as a function of angle. A direct in-
verse for the changes in , , and  demands all multicomponent 
sources and receivers, or, equivalently, PP, PS, SP, and SS data.

These conditions on data requirements hold for any pro-
cessing/inverse problem in which the reference or background 
medium is elastic—e.g., for all amplitude analysis, including 
AVO and so-called FWI and all ISS multiple removal and 
imaging with ocean-bottom or onshore acquisition. See Li et 
al. (2011), Liang et al. (2010), Matson (1997), Matson and 
Weglein (1998), Weglein et al. (2003), and H. Zhang (2006).

“Inadequate data” means something much more basic and 
fundamental than limitations due to sampling, aperture, and 
bandwidth. That is, indirect solutions can (and often do) in-
put data that are fundamentally inadequate from a basic and 
direct inverse perspective and understanding. The indirect 
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methods then search locally and globally around error surfaces 
with Frechet derivatives and conjugate gradients, and they keep 
hordes of math, physics, geophysics, and computer scientists 
busy using giant and super-fast computers looking at outputs 
and 3D color displays, and being convinced that with all the 
brainpower and resources that are invested, they are on track 
and are on their way to solving the problem. What’s wrong 
with linear iterative updating? What’s wrong begins with un-
derstanding the meaning of a linear inverse. Even in cases in 
which the data are adequate—e.g., cases with P-wave data 
and an acoustic inverse model—the algorithms that a direct 
inverse provides for explicit linear and each nonlinear estimate 
of changes in P-wave velocity and density, will differ at the first 
nonlinear step and at every subsequent step, with the nonlinear 
iterative linear estimate of these changes in physical properties. 
The linear, quadratic, cubic, … estimates of physical properties 
from a direct inverse method are explicit and unique (a gener-
alized Taylor/geometric series) and order-by-order in the data 
and will not agree with an iterative linear update. Hence, al-
though the iterative linear updating is nonlinear in the data, it 
does not represent a direct inverse solution. Further, the terms 
in the direct solution are analytically determined in terms of 
the first term, whereas iterative linear updating requires gener-
alized inverses, SVD, cost functions, and numerical solutions. 
They could not be more different. If you had an alternative to 
the solution of the quadratic equation and it produced differ-
ent roots from those produced by the direct quadratic formula, 
(Equation 2), would you call it “an inverse solution for the 
roots?” That’s the issue, and it’s that simple.

For the elastic inverse case, the difference is yet more se-
rious. A direct inverse solution for the P-velocity, VP, shear 
velocity, VS, and density, , and a linear iterative method, will 
already differ at the linear step, and that difference and result-
ing gap grow at each nonlinear step and estimate.

When it comes to directly inverting for changes in elastic 
properties and density, there are direct and explicit formulas 
for the linear and nonlinear estimates. The same single un-
changed direct inverse ISS set of equations that derived the al-
gorithms for free-surface and internal-multiple removal—and 
have demonstrated standalone capability (see, e.g., Ferreira, 
2011; Luo et al., 2011; and Weglein et al., 2003, 2011)—have 
also provided the ISS depth imaging (Weglein et al. 2011, 
2012) and direct inversion for Earth mechanical properties. 
In Zhang (2006), we find the first direct nonlinear equations 
for estimating the changes in elastic properties for a 1D Earth.

The mathematical origin of linear inverse theory (and lin-
ear iterative inversion) begins with a Taylor series of the re-
corded data, D(m), from the actual Earth. Those data depend 
on the Earth properties characterized by the label m and the 
synthetic data D(m0) from an estimate or reference value of 
those properties that we label, m0. To relate D(m) and D(m0 ), 
we introduce a Taylor series

 ,  (7)

in which the derivatives are Frechet derivatives. A linearized 
form of Equation 7 is considered

 ,                 (8)

where the Frechet derivative,

  (9)

is approximated by a finite-difference approximation involv-
ing data at m0 and data at a nearby model, m0+ Δm. Δm1

1 
means the first linear estimate of Δm, with the subscript 
standing for linear and the superscript for the first estimate. 
The matrix inversion of Equation 8 for Δm1

1 leads to a new 
approximate m0+Δm1

1, and

.    (10)

The process is repeated and is the basis of iterative linear 
inversion. Properties of that process related to convergence 
to m are spelled out in Blum (1972), page 536, with issues 
where the constants such as M that appear in the convergence 
criteria are unknown.

Another starting point for this type of perturbative ap-
proach is from scattering theory, where D(m) relates to the 
actual Green’s function, G, and D(m0 ) relates to the reference 
Green’s function, G0 , and V = m–m0. The identity among G, 
G0, and V is called the Lippmann-Schwinger or Scattering 
Equation (see, e.g., Taylor 1972)

                             (11)

and an expansion of Equation 11 for G in terms of G0 and V 
produces

         .            (12)

Keys and Weglein (1983) provide the formal association 
between D¢(m0)Δm and G0VG0. Equation 7 is a Taylor series 
in Δm, and as such that series does not have an available in-
verse series. However, because Equation 12 (which follows 
from the scattering Equation 11) is a geometric series in r 
= VG0 and a = G0 , then a geometric series for S = G−G0 
in terms of a and r—S = ar/(1−r)—has an inverse series r = 
(S/a)/(1+S/a) with terms

 
 

 

 
... . 

A unique expansion of VG0 in orders of measurement val-
ues of (G-G0 ) is

                    (13)
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The scattering-theory equation allows that forward series 
form the opportunity to find a direct inverse solution. Sub-
stituting Equation 13 into Equation 12 and setting the terms 
of equal order in the data to be equal, we have D = G0V1G0 , 
where the higher order terms are V2, V3, . . . , as given in We-
glein et al. (2003) page R33 Equations 7—14.

For the elastic equation, V is a matrix and the relationship 
between the data and V1 is

 

 

 
 

where V1, V2 are linear, quadratic contributions to V in terms 
of the data,

.
The changes in elastic properties and density are con-

tained in  , and that leads to direct and explicit 

solutions for the changes in mechanical properties in orders 

of the data,  ,

 

 

 

The ability of the forward series to have a direct inverse se-
ries derives from (1) the identity among G, G0, V provided by 
the scattering equation and then (2) the recognition that the 
forward solution can be viewed as a geometric series for the 
data, D, in terms of VG0. The latter derives the direct inverse 
series for VG0 in terms of the data.

Viewing the forward problem and series as the Taylor 
series (Equation 7) in terms of Δm does not offer a direct 
inverse series, and hence there is no choice but to solve the 
forward series in an inverse sense. It is that fact that results 
in all current AVO and FWI methods being modeling meth-
ods that are solved in an inverse sense. Among references that 
solve a forward problem in an inverse sense in P-wave AVO 
are Beylkin and Burridge (1990), Boyse and Keller (1986), 
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Burridge et al. (1998), Castagna and Smith (1994), Clay-
ton and Stolt (1981), Foster et al. (2010), Goodway (2010), 
Goodway et al. (1997), Shuey (1985), Smith and Gidlow 
(2000), Stolt (1992), and Stolt and Weglein (1985). The in-
tervention of the explicit relationship among G, G0, and V 
(the scattering equation) in a Taylor series-like form produces 
a geometric series and a direct inverse solution.

The linear equations are:

  (14)

  (15)

  (16)

  (17)

  (18)

  (19)

 

 (20)

    (21)

and

  (22)

where a (1), a (1), and a (1) are the linear estimates of the changes 
in bulk modulus, shear modulus, and density, respectively. 
The direct quadratic nonlinear equations are

  (23)

  (24)

  (25)

  (26)

  (27)

Because  relates to ,  relates to , and so on, 
the four components of the data will be coupled in the nonlin-
ear elastic inversion. We cannot perform the direct nonlinear 
inversion without knowing all components of the data. Thus, 
the direct nonlinear solution determines the data needed for 
a direct inverse. That, in turn, defines what a linear estimate 
means. That is, a linear estimate of a parameter is an estimate 
of a parameter that is linear in data that can directly invert for 
that parameter. Because DPP, DPS, DSP, and DSS are needed to 
determine a , a , and a  directly, a linear estimate for any one 
of these quantities requires simultaneously solving Equations 
19–22. See, e.g., Weglein et al. (2009) for further detail.

Those direct nonlinear formulas are like the direct solution 
for the quadratic equation mentioned above and solve directly 
and nonlinearly for changes in VP, VS, and density in a 1D elastic 
Earth. Stolt and Weglein (2012), present the linear equations 
for a 3D Earth that generalize Equations 19-22. Those formulas 
prescribe precisely what data you need as input, and they dic-
tate how to compute those sought-after mechanical properties, 
given the necessary data. There is no search or cost function, and 
the unambiguous and unequivocal data needed are full mul-
ticomponent data—PP, PS, SP, and SS—for all traces in each 
of the P and S shot records. The direct algorithm determines 
first the data needed and then the appropriate algorithms for 
using those data to directly compute the sought-after changes in 
the Earth’s mechanical properties. Hence, any method that calls 
itself inversion (let alone full-wave inversion) for determining 
changes in elastic properties, and in particular the P-wave veloc-
ity, VP, and that inputs only P-data, is more off base, misguided, 
and lost than the methods that sought two or more functions of 
depth from a single trace. You can model-match P-data until the 
cows come home, and that takes a lot of computational effort 
and people with advanced degrees in math and physics com-
puting Frechet derivatives, and requires sophisticated LP norm 
cost functions and local or global search engines, so it must be 
reasonable, scientific, and worthwhile. Why can’t we use just 
PP data to invert for changes in VP, VS, and density, because 
Zoeppritz says that we can model PP from those quantities, and 
because we have, using PP-data with angle variation, enough 
dimension? As stated above, data dimension is good, but not 
good enough for a direct inversion of those elastic properties. 
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Figure 1. Synthetic well log A-52. Figure 2. The baseline, monitor, and input reflection coefficients.

Figure 3. Comparison of actual changes in shear modulus, 
P-impedance, and velocity ratio VP / VS . The baseline is the log data in 
1986 and the monitor is the log data in 2001.

Figure 4. Comparison of first- and second-order approximations of 
relative change in shear modulus. The baseline is the log data in 1986 
and the monitor is the log data in 2001.

Figure 5. Comparison of first- and second-order approximations of 
relative change in VP / VS . The baseline is the log data in 1986 and the 
monitor is the log data in 2001.

Figure 6. Zoomed-in comparison of first- and second-order 
approximations of relative change in VP / VS. The baseline is the log 
data in 1986 and the monitor is the log data in 2001.
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The direct inverse is nonlinear. Iterative linear is nonlinear. 
But iterative linear inversion is not in any way equivalent to a 
direct nonlinear inversion. The further evidence that iterative 
linear inverse is not a direct elastic inverse solution, is that you 
can iteratively linear invert P-wave data. Hence, you can have 
the fundamentally inadequate data and perform iterative lin-
ear updating. That’s not possible with a direct inverse method. 
The framework, data needs, and algorithms provided by direct 
inversion all matter. If you iteratively linear invert multicom-
ponent data, you would not be performing a direct inversion, 
and your nonlinear estimates would not agree with the unique 
nonlinear terms provided by a direct solution. Multicompo-
nent data are important, but the direct inverse algorithm of that 
data is essential. The framework of a direct method helps you 
understand what will allow things to work in principle, and, 
equally important, it helps you identify the issue or problem 
when things don’t work. Indirect methods, on the other hand, 
can never match that definiteness, clarity, and value. When we 
use just P-wave data with an acoustic or elastic model-matching 
FWI for shallow-hazard detection or velocity estimation at top 
salt, and then issues arise, perhaps the framework and require-
ments described in this note might be among the issues behind 
a lack of predictive stability and usefulness.

In “Wave theory modeling of P-waves in a heterogeneous 
elastic medium” (Weglein 2012), a single-channel P-wave for-
malism is presented as a way to model P-waves in amplitude 
and phase without needing to model and predict shear waves. 
This P-only wave-modeling method is intractable as a param-
eter-estimation inverse procedure, blocked at the first and lin-
ear term. That supports the need for all multicomponent data 
in a direct inverse for estimating changes in the Earth’s me-
chanical properties. If one somehow remained insistent that 
P-data were adequate for a direct elastic inverse, one would 
have to provide a response to that linear, intractable inverse 
step. Further, those direct and explicit nonlinear formulas are 
derivable only from the direct inverse machinery of the inverse 
scattering series (please see the References section).

Using P-wave data with amplitude and phase for an acoustic 
Earth model flies in the face of 40 years of AVO experience, 
which says that the elastic Earth is the minimum realistic Earth 
model for any amplitude-dependent algorithm or processing 
method. Using P-wave data for an elastic Earth model, with 
algorithms that utilize amplitude and phase, violates the neces-
sary multicomponent data needs prescribed by direct inversion 
of VP, VS, and density. Having the adequate data (defined by a 
direct-inversion framework) is better than not having the neces-
sary and sufficient data and is a good place to start. However, 
even when one is starting with the indicated multicomponent 
data, the train can still be taken off the track by indirect search 
and iterative linear-updating algorithms, when direct inverse al-
gorithms are indicated and available. Iterative linear updating 
of multicomponent data is a model-matching indirect method 
and is never equivalent to a direct inversion of those data.

Some might say in response that P-wave FWI with either 
an acoustic or elastic medium, followed by use of some search 
algorithm, represents “an approximation,” and what’s wrong 
with approximations? The answer is precisely that “What IS 

wrong with the approximation?” If you purposefully or inad-
vertently ignore (or wish away) the framework and algorithms 
that a direct solution to the elastic parameter estimation pro-
vides, you will never know what you are ignoring and dropping 
and what your approximation is approximating, nor will you 
know what value your method actually represents and means, 
and how you could improve the reliability of your prediction.

In summary, so-called P-wave FWI is something less than 
advertised and is in general the wrong (acoustic) Earth model, 
the wrong data, and the wrong method—but besides that, it 
has a lot going for it.

In Zhang (2006), the direct elastic inverse was applied to 
a 4D application and the term beyond linear was able to help 
distinguish a pressure change from a fluid change. This line 
of research continued in Li (2011) and Liang (2010). This is 
comparatively illustrated with synthetic log data in Zhang’s 
Figures 1 through 6 (which are included in this article).

Epilog
A direct method to find the route from where you are to 
where you want to go—e.g., for a scheduled meeting—
would use MapQuest, while an indirect method would seek 
and search and stop at every possible location in the city until 
you arrive somewhere where someone seems to be happy to 
see you, and you have a toolbox of LP cost functions to define 
“happy.” A direct solution, in contrast to indirect methods, 
does not require or ever raise the issue of necessary but insuf-
ficient conditions or cost functions, and it’s not a “condition” 
or property. It’s a solution, a construction. Nothing beats 
that for clarity, efficiency, and effectiveness. The direct Map-
Quest inversion communication and message to the current 
indirect P-wave FWI methods is that the latter are searching 
for the meeting in the wrong city.

The message of this article is that direct inversion provides 
a framework, and a set of data requirements and algorithms, 
that not only have produced a standalone capability (with 
model-type independent algorithms) for removing free-sur-
face and internal multiples, without subsurface information, 
but also for establishing the requirements for all seismic pro-
cessing methods that depend on amplitude analysis, such as 
AVO and so-called FWI. Being frank, we wish these require-
ments were not the case, because it makes our lives more com-
plicated and difficult—but the conclusions are inescapable. 
When the framework, data requirements, and direct methods 
are not satisfied, we have a clear and understandable reason 
for the resulting failure and for what we might do to provide 
more reliable and useful predictive capability. Direct and in-
direct methods both play an essential role in an effective seis-
mic processing strategy: where the former accommodates the 
physics within the system, and the latter provides a channel 
for real-world phenomena beyond the assumed physics. 
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